[1] Bao H F, Li Y W, Diao X J et al., 2021. Effects of algal bloom (AB) on sediment microorganisms with special functions at different AB stages in Chaohu Lake. Water Science & Technology, 83(5): 1130–1140. doi:  10.2166/wst.2021.009
[2] Blindow I, Hargeby A, Andersson G, 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquatic Botany, 72(3–4): 315–334. doi:  10.1016/s0304-3770(01)00208-x
[3] Bresciani M, Giardino C, Bartoli M et al., 2011. Recognizing harmful algal bloom based on remote sensing reflectance band ratio. Journal of Applied Remote Sensing, 5(1): 053556. doi:  10.1117/1.3630218
[4] Cao X, Wang Y Q, He J et al., 2016. Phosphorus mobility among sediments, water and cyanobacteria enhanced by cyanobacteria blooms in eutrophic Lake Dianchi. Environmental Pollution, 219: 580–587. doi:  10.1016/j.envpol.2016.06.017
[5] Chen J, Quan W T, 2012. Using landsat/TM imagery to estimate nitrogen and phosphorus concentration in Taihu Lake, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(1): 273–280. doi:  10.1109/jstars.2011.2174339
[6] Coffer M M, Schaeffer B A, Darling J A et al., 2020. Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing. Ecological Indicators, 111: 105976. doi:  10.1016/j.ecolind.2019.105976
[7] Dash P, Walker N D, Mishra D R et al., 2011. Estimation of cyanobacterial pigments in a freshwater lake using OCM satellite data. Remote Sensing of Environment, 115(12): 3409–3423. doi:  10.1016/j.rse.2011.08.004
[8] Fang C, Song K S, Li L et al., 2018. Spatial variability and temporal dynamics of HABs in Northeast China. Ecological Indicators, 90: 280–294. doi:  10.1016/j.ecolind.2018.03.006
[9] Fang C, Song K S, Shang Y X et al., 2019. Remote sensing of harmful algal blooms variability for Lake Hulun using adjusted FAI (AFAI) algorithm. Journal of Environmental Informatics, 34(2): 108–122. doi:  10.3808/jei.201700385
[10] Feng L, Hou X J, Liu J G et al. , 2020. Unrealistic phytoplankton bloom trends in global lakes derived from Landsat measurements.https://doi.org/10.31223/osf.io/2wxnt.
[11] Gorelick N, Hancher M, Dixon M et al., 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18–27. doi:  10.1016/j.rse.2017.06.031
[12] Gower J, King S, Borstad G et al., 2005. Detection of intense plankton blooms using the 709 nm band of the MERIS imaging spectrometer. International Journal of Remote Sensing, 26(9): 2005–2012. doi:  10.1080/01431160500075857
[13] Harke M J, Steffen M M, Gobler C J et al., 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54: 4–20. doi:  10.1016/j.hal.2015.12.007
[14] Hilborn E D, Roberts V A, Backer L et al., 2014. Algal bloom-associated disease outbreaks among users of freshwater lakes - United States, 2009−2010. Morbidity and Mortality Weekly Report, 63(1): 11–15.
[15] Ho J C, Michalak A M, Pahlevan N, 2019. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 574(7780): 667–670. doi:  10.1038/s41586-019-1648-7
[16] Hu C M, 2009. A novel ocean color index to detect floating algae in the global oceans. Remote Sensing of Environment, 113(10): 2118–2129. doi:  10.1016/j.rse.2009.05.012
[17] Hu C M, Lee Z P, Ma R H et al., 2010. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. Journal of Geophysical Research:Oceans, 115(C4): C04002. doi:  10.1029/2009jc005511
[18] Huang C C, Wang X L, Yang H et al., 2014. Satellite data regarding the eutrophication response to human activities in the plateau Lake Dianchi in China from 1974 to 2009. Science of the Total Environment, 485–486: 1–11. doi:  10.1016/j.scitotenv.2014.03.031
[19] Huang L, Sun K, Ban J et al., 2010. Public perception of blue-algae bloom risk in Hongze Lake of China. Environmental Management, 45(5): 1065–1075. doi:  10.1007/s00267-010-9480-8
[20] Hughes A R, Williams S L, Duarte C M et al., 2009. Associations of concern: declining seagrasses and threatened dependent species. Frontiers in Ecology and the Environment, 7(5): 242–246. doi:  10.1890/080041
[21] Jing Y Y, Zhang Y C, Hu M Q et al., 2019. MODIS-satellite-based analysis of long-term temporal-spatial dynamics and drivers of algal blooms in a plateau Lake Dianchi, China. Remote Sensing, 11(21): 2582. doi:  10.3390/rs11212582
[22] Kahru M, Savchuk O P, Elmgren R, 2007. Satellite measurements of cyanobacterial bloom frequency in the Baltic Sea: interannual and spatial variability. Marine Ecology Progress Series, 343: 15–23. doi:  10.3354/meps06943
[23] Klemas V, 2013. Remote sensing of emergent and submerged wetlands: an overview. International Journal of Remote Sensing, 34(18): 6286–6320. doi:  10.1080/01431161.2013.800656
[24] Kudela R M, Berdalet E, Enevoldsen H et al., 2017. GEOHAB the global ecology and oceanography of harmful algal blooms program: motivation, goals, and legacy. Oceanography, 30(1): 12–21. doi:  10.5670/oceanog.2017.106
[25] Li J, Zhang Y C, Ma R H et al., 2017. Satellite-based estimation of column-integrated algal biomass in nonalgae bloom conditions: a case study of Lake Chaohu, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(2): 450–462. doi:  10.1109/jstars.2016.2601083
[26] Liang K, Yan G Z, 2017. Application of landsat imagery to investigate lake area variations and relict gull habitat in Hongjian Lake, Ordos Plateau, China. Remote Sensing, 9(10): 1019. doi:  10.3390/rs9101019
[27] Liang Q C, Zhang Y C, Ma R H et al., 2017. A MODIS-based novel method to distinguish surface cyanobacterial scums and aquatic macrophytes in Lake Taihu. Remote Sensing, 9(2): 133. doi:  10.3390/rs9020133
[28] Liu G, Simis S G H, Li L et al., 2018. A four-band semi-analytical model for estimating phycocyanin in inland waters from simulated MERIS and OLCI data. IEEE Transactions on Geoscience and Remote Sensing, 56(3): 1374–1385. doi:  10.1109/tgrs.2017.2761996
[29] Liu X H, Zhang Y L, Yin Y et al., 2013. Wind and submerged aquatic vegetation influence bio-optical properties in large shallow Lake Taihu, China. Journal of Geophysical Research: Biogeosciences, 118(2): 713–727. doi:  10.1002/jgrg.20054
[30] Liu X H, Zhang Y L, Shi K et al., 2015. Mapping aquatic vegetation in a large, shallow eutrophic lake: a frequency-based approach using multiple years of MODIS data. Remote Sensing, 7(8): 10295–10320. doi:  10.3390/rs70810295
[31] Luo J H, Ma R H, Duan H T et al., 2014. A new method for modifying thresholds in the classification of tree models for mapping aquatic vegetation in taihu lake with satellite images. Remote Sensing, 6(8): 7442–7462. doi:  10.3390/rs6087442
[32] Luo J H, Duan H T, Ma R H et al., 2017. Mapping species of submerged aquatic vegetation with multi-seasonal satellite images and considering life history information. International Journal of Applied Earth Observation and Geoinformation, 57: 154–165. doi:  10.1016/j.jag.2016.11.007
[33] Ma J Y, Jin S G, Li J et al., 2021. Spatio-temporal variations and driving forces of harmful algal blooms in Chaohu Lake: a multi-source remote sensing approach. Remote Sensing, 13(3): 427. doi:  10.3390/rs13030427
[34] Ma Ronghua, Yang Guishan, Duan Hongtao et al., 2011. China’s lakes at present: number, area and spatial distribution. Science China Earth Sciences, 54(2): 283–289. doi:  10.1007/s11430-010-4052-6
[35] Oyama Y, Matsushita B, Fukushima T, 2015. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM + shortwave infrared bands. Remote Sensing of Environment, 157: 35–47. doi:  10.1016/j.rse.2014.04.031
[36] Paerl H, 2008. Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. In: Hudnell H K (ed). Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. New York: Springer, 217–237. doi:  10.1007/978-0-387-75865-7_10
[37] Palmer S C J, Odermatt D, Hunter P D et al., 2015. Satellite remote sensing of phytoplankton phenology in Lake Balaton using 10 years of MERIS observations. Remote Sensing of Environment, 158: 441–452. doi:  10.1016/j.rse.2014.11.021
[38] Pu J, Song K S, Lv Y F et al., 2022. Distinguishing algal blooms from aquatic vegetation in Chinese lakes using Sentinel 2 image. Remote Sensing, 14(9). doi: 10.3390/rs14091988
[39] Qin B Q, Xu P Z, Wu Q L et al., 2007. Environmental issues of Lake Taihu, China. Hydrobiologia, 581(1): 3–14. doi:  10.1007/s10750-006-0521-5
[40] Ren Y, Pei H Y, Hu W R et al., 2014. Spatiotemporal distribution pattern of cyanobacteria community and its relationship with the environmental factors in Hongze Lake, China. Environmental Monitoring Assessment, 186(10): 6919–6933. doi:  10.1007/s10661-014-3899-y
[41] Shi K, Zhang Y L, Zhou Y Q et al., 2017. Long-term MODIS observations of cyanobacterial dynamics in Lake Taihu: responses to nutrient enrichment and meteorological factors. Scientific Reports, 7: 40326. doi:  10.1038/srep40326
[42] Simis S G H, Peters S W M, Gons H J, 2005. Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnology and Oceanography, 50(1): 237–245. doi:  10.4319/lo.2005.50.1.0237
[43] Song K S, Fang C, Jacinthe P A et al., 2021. Climatic versus anthropogenic controls of decadal trends (1983–2017) in algal blooms in lakes and reservoirs across China. Environmental Science & Technology, 55(5): 2929–2938. doi:  10.1021/acs.est.0c06480
[44] Stumpf R P, Wynne T T, Baker D B et al., 2012. Interannual variability of cyanobacterial blooms in Lake Erie. PLoS One, 7(8): e42444. doi:  10.1371/journal.pone.0042444
[45] Tyler A N, Hunter P D, Carvalho L et al., 2009. Strategies for monitoring and managing mass populations of toxic cyanobacteria in recreational waters: a multi-interdisciplinary approach. Environmental Health, 8(S1): S11. doi:  10.1186/1476-069x-8-s1-s11
[46] Wang S L, Li J S, Shen Q et al., 2015. MODIS-based radiometric color extraction and classification of inland water with the forel-ule scale: a case study of Lake Taihu. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2): 907–918. doi:  10.1109/jstars.2014.2360564
[47] Wang S S, Gao Y N, Li Q et al., 2019. Long-term and inter-monthly dynamics of aquatic vegetation and its relation with environmental factors in Taihu Lake, China. Science of the Total Environment, 651: 367–380. doi:  10.1016/j.scitotenv.2018.09.216
[48] Wang Sumin, Dou Hongsheng, 1998. Annals of Chinese Lakes. Beijing: Science Press. (in Chinese)
[49] Wells M L, Trainer V L, Smayda T J et al., 2015. Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae, 49: 68–93. doi:  10.1016/j.hal.2015.07.009
[50] Wells M L, Karlson B, Wulff A et al., 2020. Future HAB science: directions and challenges in a changing climate. Harmful Algae, 91: 101632. doi:  10.1016/j.hal.2019.101632
[51] Wynne T T, Stumpf R P, Tomlinson M C et al., 2010. Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnology and Oceanography, 55(5): 2025–2036. doi:  10.4319/lo.2010.55.5.2025
[52] Xia S, Rua, R Z, Yan M C et al., 2011. Extraction of Hongze Lake reclamation area based on RADARSAT SAR and LANDSAT ETM+. Procedia Environmental Sciences, 10: 2294–2300. doi:  10.1016/j.proenv.2011.09.358
[53] Yu W J, Nan Z T, Wang Z W et al., 2015. An effective interpolation method for MODIS land surface temperature on the Qinghai-Tibet Plateau. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(9): 4539–4550. doi:  10.1109/jstars.2015.2464094
[54] Zhang T T, Hu H, Ma X S et al., 2020. Long-term spatiotemporal variation and environmental driving forces analyses of algal blooms in Taihu Lake based on multi-source satellite and land observations. Water, 12(4): 1035. doi:  10.3390/w12041035
[55] Zhang Y C, Ma R H, Zhang M et al., 2015. Fourteen-year record (2000–2013) of the spatial and temporal dynamics of floating algae blooms in Lake Chaohu, observed from time series of MODIS images. Remote Sensing, 7(8): 10523–10542. doi:  10.3390/rs70810523
[56] Zhao D H, Jiang H, Yang T W et al., 2012. Remote sensing of aquatic vegetation distribution in Taihu Lake using an improved classification tree with modified thresholds. Journal of Environmental Management, 95(1): 98–107. doi:  10.1016/j.jenvman.2011.10.007
[57] Zhu Q, Li J S, Zhang F F et al., 2018. Distinguishing cyanobacterial bloom from floating leaf vegetation in Lake Taihu based on medium-resolution imaging spectrometer (MERIS) data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(1): 34–44. doi:  10.1109/jstars.2017.2757006
[58] Zhu Z, Wulder M A, Roy D P et al., 2019. Benefits of the free and open Landsat data policy. Remote Sensing of Environment, 224: 382–385. doi:  10.1016/j.rse.2019.02.016