[1] Adhikari B R, Gautam S, Paudel B, 2022. Landslide, land cover, and land use changes and its impacts in Nepal. In: Sarkar R, Shaw R, Pradhan B (eds). Impact of Climate Change, Land Use and Land Cover, and Socio-economic Dynamics on Landslides. Singapore: Springer, 149–164. doi:  10.1007/978-981-16-7314-6_6
[2] Amatya S C, 2020. Challenges of landslide disaster for development in Nepal. Journal of Development Innovations, 4(1): 1–19.
[3] Beven K J, Kirkby M J, 1979. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Bulletin, 24(1): 43–69. doi:  10.1080/02626667909491834
[4] Bhandary N P, Dahal R K, Timilsina M et al., 2013. Rainfall event-based landslide susceptibility zonation mapping. Natural Hazards, 69(1): 365–388. doi:  10.1007/s11069-013-0715-x
[5] Bijukchhen S M, Kayastha P, Dhital M R, 2013. A comparative evaluation of heuristic and bivariate statistical modelling for landslide susceptibility mappings in Ghurmi-Dhad Khola, east Nepal. Arabian Journal of Geosciences, 6(8): 2727–2743. doi:  10.1007/s12517-012-0569-7
[6] Chidi C L, Sulzer W, Xiong D H et al., 2021. Land use intensity dynamics in the Andhikhola watershed, middle hill of Nepal. Journal of Mountain Science, 18(6): 1504–1520. doi:  10.1007/s11629-020-6652-8
[7] Chorley R J, Schumm S A, Sugden D E, 1985. Geomorphology. Methuen, London and New York: Routledge Kegan & Paul.
[8] Dahal R K, Hasegawa S, 2008. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology, 100(3–4): 429–443. doi:  10.1016/j.geomorph.2008.01.014
[9] Dahal R K, Hasegawa S, Nonomura A et al., 2008. Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology, 102(3–4): 496–510. doi:  10.1016/j.geomorph.2008.05.041
[10] Dahal R K, Hasegawa S, Yamanaka M et al., 2009. Comparative analysis of contributing parameters for rainfall-triggered landslides in the Lesser Himalaya of Nepal. Environmental Geology, 58(3): 567–586. doi:  10.1007/s00254-008-1531-6
[11] Dahal R K, 2014. Regional-scale landslide activity and landslide susceptibility zonation in the Nepal Himalaya. Environmental Earth Sciences, 71(12): 5145–5164. doi:  10.1007/s12665-013-2917-7
[12] Dai F C, Lee C F, Li J et al., 2001. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40(3): 381–391. doi:  10.1007/s002540000163
[13] Devkota K C, Regmi A D, Pourghasemi H R et al., 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1): 135–165. doi:  10.1007/s11069-012-0347-6
[14] Dhakal S, Cui P, Rijal C P et al., 2020a. Landslide characteristics and its impact on tourism for two roadside towns along the Kathmandu Kyirong Highway. Journal of Mountain Science, 17(8): 1840–1859. doi:  10.1007/s11629-019-5871-3
[15] Dhakal S, Cui P, Su L J et al., 2020b. Landslide susceptibility assessment at Kathmandu Kyirong Highway Corridor in pre-quake, co-seismic and post-quake situations. Journal of Mountain Science, 17(11): 2652–2673. doi:  10.1007/s11629-020-6314-x
[16] Dhital M R, Khanal N R, Thapa K B, 1993. The Role of Etreme Eather Events, Mass Movements, and Land Use Changes in Increasing Natural Hazards: A Report of the Causes of the Recent Damages Incurred in South-central Nepal during 19–20 July 1993. Kathmandu: ICIMOD.
[17] Dhital M R, 2015. Geology of the Nepal Himalaya: Regional Perspective of the Classic Collided Orogen. Switzerland: Springer.
[18] Emberson R, Kirschbaum D, Stanley T, 2021. Global connections between El Nino and landslide impacts. Nature Communications, 12(1): 2262. doi:  10.1038/s41467-021-22398-4
[19] Fell R, Corominas J, Bonnard C et al., 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102(3–4): 99–111. doi:  10.1016/j.enggeo.2008.03.014
[20] Froude M J, Petley D N, 2018. Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8): 2161–2181. doi:  10.5194/nhess-18-2161-2018
[21] Gardner R A M, Gerrard A J, 2002. Relationships between runoff and land degradation on non-cultivated land in the Middle Hills of Nepal. The International Journal of Sustainable Development & World Ecology, 9(1): 59–73. doi:  10.1080/13504500209470103
[22] Gerrard J, 1994. The landslide hazard in the Himalayas: geological control and human action. In: Morisawa M (ed). Geomorphology and Natural Hazards. Amsterdam: Elsevier, 221–230. doi:  10.1016/B978-0-444-82012-9.50019-0
[23] Gerrard J, Gardner R, 2002. Relationships between landsliding and land use in the Likhu Khola drainage basin, Middle Hills, Nepal. Mountain Research and Development, 22(1): 48–55. doi:  10.1659/0276-4741(2002)022[0048:RBLALU]2.0.CO;2
[24] Ghimire M, 2011. Landslide occurrence and its relation with terrain factors in the Siwalik Hills, Nepal: case study of susceptibility assessment in three basins. Natural Hazards, 56(1): 299–320. doi:  10.1007/s11069-010-9569-7
[25] Ghimire M, 2017. Historical land covers change in the Chure-Tarai Landscape in the last six decades: drivers and environmental consequences. In: Li A N, Deng W, Zhao W (eds). Land Cover Change and Its Eco-environmental Responses in Nepal, Singapore: Springer,109–147. doi:  10.1007/978-981-10-2890-8_5
[26] Ghimire M, Timalsina N, 2020. Landslide distribution and processes in the Hills of Central Nepal: geomorphic and statistical approach to susceptibility assessment. Journal of Geoscience and Environment Protection, 8(12): 276–302. doi:  10.4236/gep.2020.812017
[27] Guo C W, Huang Y D, Yao L K et al., 2017. Size and spatial distribution of landslides induced by the 2015 Gorkha earthquake in the Bhote Koshi river watershed. Journal of Mountain Science, 14(10): 1938–1950. doi:  10.1007/s11629-016-4140-y
[28] Guzzetti F, Carrara A, Cardinali M et al., 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1–4): 181–216. doi:  10.1016/S0169-555X(99)00078-1
[29] Guzzetti F, Reichenbach P, Cardinali M et al., 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1–4): 272–299. doi:  10.1016/j.geomorph.2005.06.002
[30] Hasegawa S, Dahal R K, Yamanaka M et al., 2009. Causes of large-scale landslides in the Lesser Himalaya of central Nepal. Environmental Geology, 57(6): 1423–1434. doi:  10.1007/s00254-008-1420-z
[31] Kale V, 2012. On the link between extreme floods and excess monsoon epochs in South Asia. Climate Dynamics, 39(5): 1107–1122. doi:  10.1007/s00382-011-1251-6
[32] Kavzoglu T, Kutlug Sahin E, Colkesen I, 2015. An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy District. Natural Hazards, 76(1): 471–496. doi:  10.1007/s11069-014-1506-8
[33] Kopecký M, Čížková Š, 2010. Using topographic wetness index in vegetation ecology: does the algorithm matter? Applied Vegetation Science, 13(4): 450–459. doi:  10.1111/j.1654-109X.2010.01083.x
[34] Kubwimana D, Ait Brahim L, Nkurunziza P et al., 2021. Characteristics and distribution of landslides in the populated hillslopes of Bujumbura, Burundi. Geosciences, 11(6): 259. doi:  10.3390/geosciences11060259
[35] Lin L, Lin Q G, Wang Y, 2017. Landslide susceptibility mapping on a global scale using the method of logistic regression. Natural Hazards and Earth System Sciences, 17(8): 1411–1424. doi:  10.5194/nhess-17-1411-2017
[36] Linkha T R, Rai D K, Lama F, 2019. Landslide hazard mapping: GIS-based susceptibility assessment of Leoutikhola watershed, Dhankuta, Nepal. The Third Pole: Journal of Geography Education, 18–19: 71–84. doi:  10.3126/ttp.v18i0.28008
[37] Linkha T R, Rai D K, Khatiwada S P, 2020. Analysis of earthen road construction and land degradation in the Tankhuwakhola watershed of Dhankuta district. The Geographic Base, 7: 113–126. doi:  10.3126/tgb.v7i0.34281
[38] Manchado A M T, Allen S, Ballesteros-Cánovas J A et al., 2021. Three decades of landslide activity in western Nepal: new insights into trends and climate drivers. Landslides, 18(6): 2001–2015. doi:  10.1007/s10346-021-01632-6
[39] Mandal S, Mandal K, 2018. Bivariate statistical index for landslide susceptibility mapping in the Rorachu River Basin of eastern Sikkim Himalaya, India. Spatial Information Research, 26(1): 59–75. doi:  10.1007/s41324-017-0156-9
[40] Martha T R, Roy P, Mazumdar R et al., 2017. Spatial characteristics of landslides triggered by the 2015 Mw 7.8 (Gorkha) and Mw 7.3 (Dolakha) earthquakes in Nepal. Landslides, 14(2): 697–704. doi:  10.1007/s10346-016-0763-x
[41] McAdoo B G, Quak M, Gnyawali K R et al., 2018. Roads and landslides in Nepal: how development affects environmental risk. Natural Hazards and Earth System Sciences, 18(12): 3203–3210. doi:  10.5194/nhess-18-3203-2018
[42] Meena S R, Ghorbanzadeh O, Blaschke T, 2019. A comparative study of statistics-based landslide susceptibility models: a case study of the region affected by the Gorkha Earthquake in Nepal. ISPRS International Journal of Geo-Information, 8(2): 94. doi:  10.3390/ijgi8020094
[43] Paudel B, Zhang Y L, Li S C et al., 2016. Review of studies on land use and land cover change in Nepal. Journal of Mountain Science, 13(4): 643–660. doi:  10.1007/s11629-015-3604-9
[44] Petley D N, Hearn G J, Hart A et al., 2007. Trends in landslide occurrence in Nepal. Natural Hazards, 43(1): 23–44. doi:  10.1007/s11069-006-9100-3
[45] Poudyal C P, Chang C D, Oh H J et al., 2010. Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environmental Earth Sciences, 61(5): 1049–1064. doi:  10.1007/s12665-009-0426-5
[46] Pradhan A M S, Dawadi A, Kim Y T, 2012. Use of different bivariate statistical landslide susceptibility methods: a case study of Khulekhani Watershed, Nepal. Journal of Nepal Geological Society, 44: 1–12. doi:  10.3126/jngs.v44i0.24483
[47] Regmi A D, Yoshida K, Dhital M R et al., 2013a. Effect of rock weathering, clay mineralogy, and geological structures in the formation of large landslide, a case study from Dumre Besei landslide, Lesser Himalaya Nepal. Landslides, 10(1): 1–13. doi:  10.1007/s10346-011-0311-7
[48] Regmi A D, Yoshida K, Nagata H et al., 2013b. The relationship between geology and rock weathering on the rock instability along Mugling-Narayanghat road corridor, Central Nepal Himalaya. Natural Hazards, 66(2): 501–532. doi:  10.1007/s11069-012-0497-6
[49] Regmi A D, Devkota K C, Yoshida K et al., 2014a. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2): 725–742. doi:  10.1007/s12517-012-0807-z
[50] Regmi A D, Yoshida K, Nagata H et al., 2014b. Rock toppling assessment at Mugling-Narayanghat road section: ‘a case study from Mauri Khola landslide’, Nepal. Catena, 114: 67–77. doi:  10.1016/j.catena.2013.10.013
[51] Regmi A D, Yoshida K, Pourghasemi H R et al., 2014c. Landslide susceptibility mapping along Bhalubang—Shiwapur area of mid-Western Nepal using frequency ratio and conditional probability models. Journal of Mountain Science, 11(5): 1266–1285. doi:  10.1007/s11629-013-2847-6
[52] Regmi A D, Yoshida K, Cui P et al., 2017. Development of Taprang landslide, West Nepal. Landslides, 14(3): 929–946. doi:  10.1007/s10346-016-0752-0
[53] Reichenbach P, Rossi M, Malamud B D et al., 2018. A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180: 60–91. doi:  10.1016/j.earscirev.2018.03.001
[54] Roback K, Clark M K, West A J et al., 2018. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology, 301: 121–138. doi:  10.1016/j.geomorph.2017.01.030
[55] Robinson T R, Rosser N J, Densmore A L et al., 2017. Rapid post-earthquake modelling of coseismic landslide intensity and distribution for emergency response decision support. Natural Hazards and Earth System Sciences, 17: 1521–1540. doi:  10.5194/nhess-17-1521-2017
[56] Schmid M O, Baral P, Gruber S et al., 2015. Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth. The Cryosphere, 9(6): 2089–2099. doi:  10.5194/tc-9-2089-2015
[57] Selby M J, 1982. Hillslope Materials and Processes. Oxford: Oxford University Press.
[58] Shroder J F, Bishop M P, 1998. Mass movement in the Himalaya: new insights and research directions. Geomorphology, 26(1–3): 13–35. doi:  10.1016/S0169-555X(98)00049-X
[59] Thapa P B, 2018. Analysis of landslides triggered by the 2015 Gorkha Earthquake, Nepal. In: Kruhl J H, Adhikari R, Dorka U E (eds.). Living Under the Threat of Earthquakes. Cham: Springer International Publishing, 45–63. doi:  10.1007/978-3-319-68044-6_3
[60] Tiwari B, Ajmera B, Dhital S, 2017. Characteristics of moderate- to large-scale landslides triggered by the Mw7.8 2015 Gorkha earthquake and its aftershocks. Landslides, 14(4): 1297–1318. doi:  10.1007/s10346-016-0789-0
[61] Tucker G E, Catani F, Rinaldo A et al., 2001. Statistical analysis of drainage density from digital terrain data. Geomorphology, 36(3–4): 187–202. doi:  10.1016/S0169-555X(00)00056-8
[62] Van Westen C J, 1997. Statistical Landslide Hazard Analysis ILWIS 2.1 for Windows Application Guide. Enschede: ITC Publication.
[63] Varnes D J, 1978. Slope movement types and processes. In: Schuster R L, Krizek R J (eds.). Special Report 176: Landslides: Analysis and Control. Washington, DC: Transportation Research Board, National Academy of Sciences, 11–33.
[64] Wei K, Ouyang C J, Duan H T et al., 2020. Reflections on the catastrophic 2020 Yangtze river basin flooding in southern China. The Innovation, 1(2): 100038. doi:  10.1016/j.xinn.2020.100038
[65] Wilson J P, Gallant J C, 2000. Terrain Analysis: Principles and Applications. New York: John Wiley and Sons.
[66] Wubalem A, Meten M, 2020. Landslide susceptibility mapping using information value and logistic regression models in Goncha Siso Eneses area, northwestern Ethiopia. SN Applied Sciences, 2(5): 807. doi:  10.1007/s42452-020-2563-0
[67] Xu C, Xu X W, Dai F C et al., 2012. Landslide hazard mapping using GIS and weight of evidence model in Qingshui River watershed of 2008 Wenchuan earthquake struck region. Journal of Earth Science, 23(1): 97–120. doi:  10.1007/s12583-012-0236-7
[68] Xue Y G, Kong F M, Li S C et al., 2021. China starts the world’s hardest ‘Sky-High Road’ project: challenges and countermeasures for Sichuan-Tibet railway. The Innovation, 2(2): 100105. doi:  10.1016/j.xinn.2021.100105
[69] Yang X K, Huang P, 2021. Restored relationship between ENSO and Indian summer monsoon rainfall around 1999/2000. The Innovation, 2(2): 100102. doi:  10.1016/j.xinn.2021.100102
[70] Zhang J Q, Liu R K, Deng W et al., 2016. Characteristics of landslide in Koshi River Basin, Central Himalaya. Journal of Mountain Science, 13(10): 1711–1722. doi:  10.1007/s11629-016-4017-0
[71] Zhang J Q, van Westen C J, Tanyas H et al., 2019. How size and trigger matter: analyzing rainfall- and earthquake-triggered landslide inventories and their causal relation in the Koshi River Basin, central Himalaya. Natural Hazards and Earth System Sciences, 19(8): 1789–1805. doi:  10.5194/nhess-19-1789-2019