[1] Aizen V B, Aizen E M, Melack J M et al., 1997. Climate and hydrologic change in the Tien Shan, Central Asia. Journal of Climate, 10(6):1393-140. doi:10.1175/1520-0442(1997)010< 1393:CAHCIT>2.0.CO;2
[2] Amann B, Szidat S, Grosjean M, 2015. A millennial-long record of warm season precipitation and flood frequency for the North-western Alps inferred from varved lake sediments:im-plications for the future. Quaternary Science Reviews, 115:89-100. doi:  10.1016/j.quascirev.2015.03.002
[3] Appleby P G, Oldfield F, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 5(1):1-8. doi:10.1016/S0341-8162(78) 80002-2
[4] Appleby P G, 2008. Three decades of dating recent sediments by fallout radionuclides:a review. The Holocene, 18(1):83-93. doi: 10.1177/0959683607085598
[5] Arnaud F, Poulenard J, Giguet-Covex C et al., 2016. Erosion under climate and human pressures:an alpine lake sediment perspective. Quaternary Science Reviews, 152:1-18. doi: 10.1016/j.quascirev.2016.09.018
[6] Boomer I, Wünnemann B, Mackay A W et al., 2009. Advances in understanding the late Holocene history of the Aral Sea region. Quaternary International, 194(1):79-90. doi:10.1016/j. quaint.2008.03.007
[7] Chen F H, Chen J H, Holmes J et al., 2010. Moisture changes over the last millennium in arid central Asia:a review, synthesis and comparison with monsoon region. Quaternary Science Reviews, 29(7-8):1055-1068. doi:10.1016/j.quascirev.2010. 01.005
[8] Chen Jingan, Wan Guoqiang, Zhang D D et al., 2004. Environ-mental records of lacustrine sediments in different time scales:Sediment grain size as an example. Science in China:Series D:Earth Sciences, 47(10):954-960. doi: 10.1360/03yd0160
[9] Chen J H, Chen F H, Feng S et al., 2015. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age:spatial patterns and possible mechanisms. Quaternary Science Reviews, 107:98-111. doi: 10.1016/j.quascirev.2014.10.012
[10] Chiba T, Endo K, Sugai T et al., 2016. Reconstruction of Lake Balkhash levels and precipitation/evaporation changes during the last 2000 years from fossil diatom assemblages. Quaternary International, 397:330-341. doi:10.1016/j.quaint.2015. 08.009
[11] Christiansen B, Ljungqvist F C, 2012. The extra-tropical Northern Hemisphere temperature in the last two millennia:reconstruc-tions of low-frequency variability. Climate of the Past, 8(2):765-786. doi: 10.5194/cp-8-765-2012
[12] Corella J P, Benito G, Rodriguez-Lloveras X et al., 2014. Annual-ly-resolved lake record of extreme hydro-meteorological events since AD 1347 in NE Iberian Peninsula. Quaternary Science Reviews, 93:77-90. doi:10.1016/j.quascirev.2014. 03.020
[13] Davi N K, Jacoby G C, Curtis A E et al., 2006. Extension of Drought Records for Central Asia Using Tree Rings:west-central Mongolia. Journal of Climate, 19(2):288-299. doi: 10.1175/JCLI3621.1
[14] Easterling D R, Meehl G A, Parmesan C et al., 2000. Climate extremes:observations, modeling, and impacts. Science, 289(5487): 2068-2074. doi: 10.1126/science.29.5487.2068
[15] Feng Min, 1993. Landform and origin of Hanas Lake, Altay Mountains. Journal of Glaciology and Geocryology, 15(4):559-565. (in Chinese)
[16] Garcia-Orellana J, Sanchez-Cabeza JA, Masqué P et al., 2006. Atmospheric fluxes of 210Pb to the western Mediterranean Sea and the Saharan dust influence. Journal of Geophysical Re-search:Atmospheres, 111(D15):D15305. doi:10.1029/2005 JD006660
[17] Glur L, Wirth S B, Büntgen U et al., 2013. Frequent floods in the European Alps coincide with cooler periods of the past 2500 years. Scientific Reports, 3:2770. doi: 10.1038/srep02770
[18] Hu Yicheng, Yuan Yujiang, Wei Weishou et al., 2012. Tree-ring reconstruction of mean June-July temperature during 1613-2006 in east Altay, Xinjiang of China. Journal of Desert Re-search, 32(4):1003-1009. (in Chinese)
[19] Huang Xiaozhong, Chen Fahu, Xiao Sun et al., 2008. Primary study on the environmental significances of grain-size changes of the Lake Bosten sediments. Journal of Lake Sciences, 20(3):291-297. doi:10.18307/2008.0305. (in Chinese)
[20] IPCC, 2013. Climate change 2013:the physical science basis. In:Stocker T F et al. (eds). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press.
[21] Li J B, Gou X H, Cook E R et al., 2006. Tree-ring based drought reconstruction for the central Tien Shan area in northwest China. Geophysical Research Letters, 33(7):L07715. doi:10. 1029/2006GL025803
[22] Li Y F, Guo Y, Yu G. 2013. An analysis of extreme flood events during the past 400 years at Taihu lake, China. Journal of Hy-drology, 500:217-225. doi: 10.1016/j.jhydrol.2013.02.028
[23] Li Y, Qiang M R, Zhang J W et al., 2016. Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, northwestern China. Qua-ternary International, 452:91-101. doi:10.1016/j.quaint. 2016.07.053
[24] Liu C T, Zipser E J, 2015. The global distribution of largest, deepest, and most intense precipitation systems. Geophysical Research Letters, 42(9):3591-3595. doi:10.1002/2015GL 063776
[25] López-Merino L, Leroy S A G, Eshel A et al., 2016. Using paly-nology to re-assess the Dead Sea laminated sediments:indeed varves? Quaternary Science Reviews, 140:49-66. doi:10. 1016/j.quascirev.2016.03.024
[26] Ma L, Wu J L, Abuduwaili J et al., 2015. Aeolian particle transport inferred using a~150-year sediment record from Sayram Lake, arid northwest China. Journal of Limnology, 74(3):584-593. doi: 10.4081/jlimnol.2015.1208
[27] Min S K, Zhang X B, Zwiers F W et al., 2011. Human contribu-tion to more-intense precipitation extremes. Nature, 470(7334):378-381. doi: 10.1038/nature09763
[28] Nuerlan Hazaizi, Shen Yongping, 2014. Flood characteristics of Altay area, Xinjiang. Journal of China Hydrology, 34(4):74-81. (in Chinese)
[29] Oldfield F, 2005. Environmental Change:Key Issues and Alter-native Approaches. Cambridge, UK:Cambridge University Press.
[30] Pall P, Aina T, Stone D A et al., 2011. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 470(7334):382-385. doi: 10.1038/nature09762
[31] Purkait B, Majumdar D D, 2014. Distinguishing different sedi-mentary facies in a deltaic system. Sedimentary Geology, 308(7):53-62. doi: 10.1016/j.sedgeo.2014.05.001
[32] Schillereff D N, Chiverrell R C, Macdonald N et al., 2014. Flood stratigraphies in lake sediments:a review. Earth-Science Re-views, 135:17-37. doi: 10.1016/j.earscirev.2014.03.011
[33] Shi Yafeng, Shen Yongping, Li Dongliang et al., 2003. Discussion on the present climate change from warm-dry to warm-wet in northwest china. Quaternary Sciences, 23(2):152-164. (in Chinese)
[34] Shi Y F, Shen Y K, Kang E S et al., 2007. Recent and Future Cli-mate Change in Northwest China. Climatic Change, 80(3-4):379-393. doi: 10.1007/s10584-006-9121-7
[35] Trouet V, Esper J, Graham N E et al., 2009. Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science, 324(5923):78-80. doi:10.1126/science. 1166349
[36] Wang Hao, Liu Guohua, Li Zongshan et al., 2016. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China. Chinese Geographical Science, 26(1):35-47. doi: 10.1007/s11769-015-0762-1
[37] Wen Kegang, Shi Yuguang, 2006. China Meteorological Disasters Books:Xinjiang Volume. Beijing:China Meteorological Press, 75-146. (in Chinese)
[38] Wilhelm B, Arnaud F, Enters D et al., 2012. Does global warming favour the occurrence of extreme floods in European Alps? First evidences from a NW Alps proglacial lake sediment record. Climatic Change, 113(3-4):563-581. doi:10.1007/s 10584-011-0376-2
[39] Wilhelm B, Arnaud F, Sabatier P et al., 2013. Palaeoflood activity and climate change over the last 1400 years recorded by lake sediments in the north-west European Alps. Journal of Qua-ternary Science, 28(2):189-199. doi: 10.1002/jqs.2609
[40] Wu J L, Liu W, Zeng H A et al., 2014. Water Quantity and Quality of Six Lakes in the Arid Xinjiang Region, NW China. Envi-ronmental Processes, 1(2):115-125. doi: 10.1007/s40710-014-0007-9
[41] Xiao J L, Chang Z G, Wen R L et al., 2009. Holocene weak mon-soon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China. The Holocene, 19(6):899-908. doi:10.1177/09596836 09336574
[42] Yin Zhiqiang, Qin Xiaoguang, Wu Jinshui et al., 2008. Multimodal grain-size distribution characteristics and formation mechanism of lake sediments. Quaternary Sciences, 28(2):345-353. (in Chinese)
[43] Zhang M, Chen Y N, Shen Y J et al., 2017. Changes of precipita-tion extremes in arid Central Asia. Quaternary International, 436:16-27. doi: 10.1016/j.quaint.2016.12.024
[44] Zhang Tongwen, Yuan Yujiang, Yu Shulong et al., 2008a. Recon-structed mean temperature series from May to September with tree-ring in the western region of Altay near the recent 365 a. Arid Zone Research, 25(2):288-294. (in Chinese)
[45] Zhang Tongwen, Yuan Yujiang, Yu Shulong et al., 2008b. June to September precipitation series of 1481-2004 reconstructed from tree-ring in the western region of Altay Prefecture, Xinjiang. Journal of Glaciology and Geocryology, 30(4):659-657. (in Chinese)
[46] Zhang Tongwen, Yuan Yujiang, Wei Wenshou et al., 2010. Re-constructed number of snow cover depth ≥ 0 cm days changes in the western Altai Prefecture, using tree-ring width chronol-ogies. Desert and Oasis Meteorology, 4(3):6-11. (in Chinese)
[47] Zhang Wei, Fu Yanjing, Liu Beibei et al., 2015. Geomorphological process of late Quaternary glaciers in Kanas river valley of the Altay Mountains. Acta Geographic Sinica, 70(5):739-750. (in Chinese)