[1] Ahrens R J, Eswaran H, Rice T J, 2003. Soil classification: past and present. In: Eswaran H et al. (eds.). Soil Classification: A Global Desk Reference. Boca Raton: CRC Press.
[2] Aitkenhead M J, Coull M C, 2016. Mapping soil carbon stocks across Scotland using a neural network model. Geoderma, 262: 187-198. doi: 10.1016/j.geoderma.2015.08.034
[3] Bapat R B, 2012. Linear Mixed Models. Heidelberg: Springer. doi: 10.1007/978-1-4471-2739-0
[4] Bishop T F A, McBratney A B, Laslett G M, 1999. Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1-2): 27-45. doi: 10.1016/S0016-7061(99)00003-8
[5] Blake G R, 1965. Bulk density. In: Black, C A (eds.). Methods of Soil Analysis, Part1. Physical and Mineralogical Properties, including Statistics of Measurement and Sampling. Madison: American Society of Agronomy, Soil Science Society of America.
[6] Bockheim J G, 2014. Soil Geography of the USA: A Diagnostic-Horizon Approach. Heidelberg: Springer.
[7] Boehner J, Koethe R, Conrad O et al., 2002. Soil regionalisation by means of terrain analysis and process parameterisation. In: Micheli E et al. (eds.). Soil Classification 2001. Luxembourg: European Soil Bureau, 213-222.
[8] Bourennane H, Salvador-Blanes S, Couturier A et al., 2014. Geostatistical approach for identifying scale-specific correlations between soil thickness and topographic attributes. Geomorphology, 220: 58-67. doi: 10.1016/j.geomorph.2014.05.026
[9] Breiman L, Friedman, J H, Olshen R A et al., 1984. Classification and Regression Trees. New York: Chapman and Hall.
[10] Cardinael R, Chevallier T, Barthès B G et al., 2015. Impact of alley cropping agroforestry on stocks, forms and spatial distribution of soil organic carbon: a case study in a Mediterranean context. Geoderma, 259-260: 288-299. doi: 10.1016/j.geoderma.2015.06.015
[11] Chaplot V, Lorentz S, Podwojewski P et al., 2010. Digital mapping of A-horizon thickness using the correlation between various soil properties and soil apparent electrical resistivity. Geoderma, 157(3-4): 154-164. doi: 10.1016/j.geoderma.2010.04.006
[12] CMA (China Meteorological Administration), 2011. China Meteorological Data Daily Value. Beijing: China Meteorological Data Sharing Service System.
[13] Cooperative Research Group on Chinese Soil Taxonomy, 2001. Chinese Soil Taxonomy. Beijing: Science Press.
[14] Crouvi O, Pelletier J D, Rasmussen C, 2013. Predicting the thickness and aeolian fraction of soils in upland watersheds of the Mojave Desert. Geoderma, 195-196: 94-110. doi: 10.1016/j.geoderma.2012.11.015
[15] de Gruijter J, Brus D J, Bierkens M F P et al., 2006. Sampling for Natural Resource Monitoring. Berlin: Springer. doi: 10.1007/3-540-33161-1
[16] Ding F, Hu Y L, Li L J et al., 2013. Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China. Plant & Soil, 373(1-2): 659-672. doi: 10.1007/s11104-013-1827-5
[17] Dorji T, Odeh I O A, Field D J et al., 2014. Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas. Forest Ecology and Management, 318: 91-102. doi:10.1016/j.foreco. 2014.01.003
[18] Editorial board of Series of Chinese Soil Taxonomy Classification, 1993. Progress of the Chinese Soil Taxonomy Classification. Beijing: Science Press.
[19] Gallant J C, Dowling T I, 2003. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research, 39(12): 1347-1359. doi:10.1029/2002 WR001426
[20] Grunwald S, 2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152(3-4): 195-207. doi: 10.1016/j.geoderma.2009.06.003
[21] Jenny H, 1941. Factors of Soil Formation: A System of Quantitative Pedology. New York: McGraw Hill.
[22] Kempen B, Brus D J, Stoorvogel J J, 2011. Three-dimensional mapping of soil organic matter content using soil type-specific depth functions. Geoderma, 162(1-2): 107-123. doi: 10.1016/j.geoderma.2011.01.010
[23] Kosmas C, Gerontidis S, Marathianou M, 2000. The effect of land use change on soils and vegetation over various lithological formations on Lesvos (Greece). Catena, 40(1): 51-68. doi: 10.1016/S0341-8162(99)00064-8
[24] Lacoste M, Minasny B, McBratney A et al., 2014. High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma, 213: 296-311. doi: 10.1016/j.geoderma.2013.07.002
[25] Ließ M, Glaser B, Huwe B, 2012. Making use of the World Reference Base diagnostic horizons for the systematic description of the soil continuum: application to the tropical mountain soil-landscape of southern Ecuador. Catena, 97: 20-30. doi:1 0.1016/j.catena.2012.05.002
[26] Lin L I K, 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1): 255-268. doi: 10.2307/2532051
[27] Liu F, Zhang G L, Sun Y J et al., 2013. Mapping the three-dimensional distribution of soil organic matter across a subtropical hilly landscape. Soil Science Society of America Journal, 77(4): 1241-1253. doi: 10.2136/sssaj2012.0317
[28] Liu X, Burras L, Kravchenko Y S et al., 2012. Overview of Mollisols in the world: Distribution, land use and management. Canadian Journal of Soil Science, 92(3): 383-402. doi: 10.4141/cjss2010-058
[29] Mao D H, Wang Z M, Li L et al., 2015. Soil organic carbon in the Sanjiang Plain of China: storage, distribution and controlling factors. Biogeosciences, 12(6): 1635-1645. doi: 10.5194/bg-12-1635-2015
[30] Martin M P, Orton T G, Lacarce E et al., 2014. Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale. Geoderma, 223-225: 97-107. doi: 10.1016/j.geoderma.2014.01.005
[31] Martin M P, Wattenbach M, Smith P et al., 2011. Spatial distribution of soil organic carbon stocks in France. Biogeosciences, 8: 1053-1065. doi: 10.5194/bg-8-1053-2011
[32] Nelson D W, Sommers L E, 1982. Total carbon, organic carbon and organic matter. In: Page A L et al. (eds.). Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Madison: Agronomy Monograph, 539-579.
[33] Ottoy S, Beckers V, Jacxsens P et al., 2015. Multi-level statistical soil profiles for assessing regional soil organic carbon stocks. Geoderma, 253-254: 12-20. doi:10.1016/j.geoderma.2015. 04.001
[34] Parras-Alcántara L, Lozano-García B, Brevik E C et al., 2015. Soil organic carbon stocks assessment in Mediterranean natural areas: a comparison of entire soil profiles and soil control sections. Journal of Environmental Management, 155: 219-228. doi: 10.1016/j.jenvman.2015.03.039
[35] Qi Guang, Chen Hua, Zhou Li et al., 2016. Carbon stock of larch plantations and its comparison with an old-growth forest in northeast China. Chinese Geographical Science, 26(1): 10-21. doi: 10.1007/s11769-015-0772-z
[36] Qin Falyu, Shi Xuezheng, Xu Shengxiang et al., 2016. Zonal differences in correlation patterns between soil organic carbon and climate factors at multi-extent. Chinese Geographical Science, 26(5): 670-678. doi: 10.1007/s11769-015-0736-3
[37] Song X D, Brus D J, Liu F et al., 2016. Mapping soil organic carbon content by geographically weighted regression: a case study in the Heihe River Basin, China. Geoderma, 261: 11-22. doi: 10.1016/j.geoderma.2015.06.024
[38] Vanwalleghem T, Poesen J, McBratney A et al., 2010. Spatial variability of soil horizon depth in natural loess-derived soils. Geoderma, 157(1-2): 37-45. doi:10.1016/j.geoderma.2010. 03.013
[39] Vasenev V I, Stoorvogel J J, Vasenev I I et al., 2014. How to map soil organic carbon stocks in highly urbanized regions? Geoderma, 226-227: 103-115. doi:10.1016/j.geoderma.2014. 03.007
[40] Webster R, Oliver M A, 2001. Geostatistics for Environmental Scientists. Chichester: John Wiley & Sons.
[41] Wei Yawei, Yu Dapao, Lewis Bernard Joseph et al., 2014. Forest carbon storage and tree carbon pool dynamics under natural forest protection program in northeastern China. Chinese Geographical Science, 24(4): 397-405. doi: 10.1007/s11769-014-0703-4
[42] Were K, Bui D T, Dick Ø B et al., 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52: 394-403. doi: 10.1016/j.ecolind.2014.12.028
[43] Xiong Yi, 1987. Chinese Soils (Second Edition). Beijing: Science Press, 20-38. (in Chinese)
[44] Yu P, Li Q, Jia H et al., 2013. Carbon stocks and storage potential as affected by vegetation in the Songnen grassland of northeast China. Quaternary International, 306(450): 114-120. doi: 10.1016/j.quaint.2013.05.053
[45] Zhang Dan, Zheng Haifeng, Ren Zhibin et al., 2015. Effects of forest type and urbanization on carbon storage of urban forests in Changchun, Northeast China. Chinese Geographical Science, 25(2): 147-158. doi: 10.1007/s11769-015-0743-4
[46] Zhang Y, Zhao Y C, Shi X Z et al., 2008. Variation of soil organic carbon estimates in mountain regions: a case study from Southwest China. Geoderma, 146(3-4): 449-456. doi: 10.1016/j.geoderma.2008.06.015
[47] Zhi J, Jing C, Lin S et al., 2014. Estimating soil organic carbon stocks and spatial patterns with statistical and GIS-based methods. Plos One, 9(5): e97757. doi:10.1371/journal.pone. 0097757