[1] Bannari A, Morin D, Bonn F et al., 1995. A review of vegetation indices. Remote Sensing Reviews, 13(1):95-120. doi: 10.1080/02757259509532298
[2] Bicheron P, Leroy M, 1999. A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model. Remote Sensing of Environment, 67(3):251-266. doi: 10.1016/S0034-4257(98)00083-2
[3] Broge N H, Leblanc E, 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Geochimica Et Cosmochimica Acta, 76(2):156-172. doi: 10.1016/S0034-4257(00)00197-8
[4] Cho M A, Skidmore A K, 2006. A new technique for extracting the red edge position from hyperspectral data:the linear ex-trapolation method. Remote Sensing of Environment, 101(2):181-193. doi: 10.1016/j.rse.2005.12.011
[5] Danson F M, Plummer S E, 1995. Red-edge response to forest leaf area index. International Journal of Remote Sensing, 16(1):183-188. doi: 10.1080/01431169508954387
[6] Darvishzadeh R, Skidmore A, Schlerf M et al., 2008a. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sensing of Environment, 112(5):2592-2604. doi: 10.1016/j.rse.2007.12.003
[7] Darvishzadeh R, Skidmore A, Schlerf M et al., 2008 b. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. Isprs Journal of Photogrammetry & Remote Sensing, 63(4):409-426. Doi: 10.1016/j.isprsjprs.2008.01.001
[8] Daughtry C S T, Walthall C L, Kim M S et al., 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy re-flectance. Remote Sensing of Environment, 74(2):229-239. doi: 10.1016/S0034-4257(00)00113-9
[9] Delegido J, Verrelst J, Rivera J P et al., 2015. Brown and green, lai mapping through spectral indices. International Journal of Applied Earth Observation & Geoinformation, 35(Part B):350-358. doi: 10.1016/j.jag.2014.10.001
[10] Elvidge C D, Chen Z, 1995. Comparison of broad-band and nar-row-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54(1):38-48. doi: 10.1016/0034-4257(95)00132-K
[11] Everitt J H, Yang C, 2007. Mapping broom snakeweed through image analysis of color-infrared photography and digital im-agery. Environmental Monitoring & Assessment, 134(1-3):287-92. doi: 10.1007/s10661-007-9619-0
[12] Feret J B, François C, Asner G P et al., 2008. Prospect-4 and 5:advances in the leaf optical properties model separating pho-tosynthetic pigments. Remote Sensing of Environment, 112(6):3030-3043. doi: 10.1016/j.rse.2008.02.012
[13] Filella I, 1994. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Interna-tional Journal of Remote Sensing, 15(7):1459-1470. doi: 10.1080/01431169408954177
[14] Goel N S, Thompson R L, 1984. Inversion of vegetation canopy reflectance models for estimating agronomic variables. v. es-timation of leaf area index and average leaf angle using meas-ured canopy reflectances. Remote Sensing of Environment, 16(1):69-85. doi: 10.1016/0034-4257(84)90028-2
[15] Haboudane D, Miller J R, Pattey E et al., 2004. Hyperspectral vegetation indices and novel algorithms for predicting green lai of crop canopies:modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3):337-352. doi: 10.1016/j.rse.2003.12.013
[16] Haboudane D, Miller J R, Tremblay N et al., 2002. Integrated narrow-band vegetation indices for prediction of crop chloro-phyll content for application to precision agriculture. Remote Sensing of Environment, 81(2-3):416-426. doi: 10.1016/S0034-4257(02)00018-4
[17] Houborg R, Soegaard H, Boegh E, 2007. Combining vegetation index and model inversion methods for the extraction of key vegetation biophysical parameters using terra and aqua modis reflectance data. Remote Sensing of Environment, 106(1):39-58. doi: 10.1016/j.rse.2006.07.016
[18] Jacquemoud S, Baret F, 1990. PROSPECT:a model of leaf optical properties spectra. Remote sensing of Environment, 34(2):75-91. doi: 10.1016/0034-4257(90)90100-Z
[19] Jacquemoud S, Baret F, Andrieu B et al., 1995. Extraction of vegetation biophysical parameters by inversion of the prospect+sail models on sugar beet canopy reflectance data:application to tm and aviris sensors. Remote Sensing of Environment, 52(3):163-172. doi: 10.1016/0034-4257(95)00018-V
[20] Kim H O, Yeom J M, 2014. Effect of red-edge and texture features for object-based paddy rice crop classification using rapideye multi-spectral satellite image data. International Journal of Remote Sensing, 35(19):7046-7068. doi: 10.1080/01431161.2014.965285
[21] Li F, Miao Y X, Feng G H et al., 2014. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crops Research, 157(2):111-123. doi: 10.1016/j.fcr.2013.12.018
[22] Lin Sen, Liu Ronggao, 2016. A simple method to extract tropical monsoon forests using NDVI based on MODIS data:a case study in South Asia and Peninsula Southeast Asia. Chinese Geographical Science, 26(1):22-34. doi: 10.1007/s11769-015-0789-3
[23] Marceau D J, Hay G J, 1999. Remote sensing contributions to the scale issue. Canadian Journal of Remote Sensing Journal Canadien De Télédétection, 25(4):357-366. doi: 10.1080/07038992.1999.10874735
[24] Moody A, Woodcock C E, 1995. The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing. Landscape Ecology, 10(6):363-379. doi: 10.1007/BF00130213
[25] Nguy-Robertson A L, 2013. The mathematical identity of two vegetation indices:mcari2 and mtvi2. International Journal of Remote Sensing, 34(34):7504-7507. doi: 10.1080/01431161.2013.823525
[26] Paul J C, Edward J M, 1983. The relationships between the chlo-rophyll concentration, LAI and reflectance of a simple vegeta-tion canopy. International Journal of Remote Sensing, 4(2):247-255. doi: 10.1080/01431168308948544
[27] Pisek J, Chen J M, 2007. Comparison and validation of modis and vegetation global LAI products over four bigfoot sites in north America. Remote Sensing of Environment, 109(1):81-94. doi: 10.1016/j.rse.2006.12.004
[28] Rogers J N, Parrish C E, Ward L G et al., 2015. Evaluation of field-measured vertical obscuration and full waveform lidar to assess salt marsh vegetation biophysical parameters. Remote Sensing of Environment, 156:264-275. doi:10.1016/j.rse. 2014.09.035
[29] Stéphane J, Wout V, Frédéric B et al., 2009. Prospect+sail mod-els:a review of use for vegetation characterization. Remote Sensing of Environment, 113(2009):S56-S66. doi: 10.1016/j.rse.2008.01.026
[30] Su Lihong, Li Xiaowen, Huang Yuxia, 2001. A review on scale in remote sensing. Advance in Earth Sciences, 16(4):544-548. (in Chinese)
[31] Sun Li, Cheng Lijuan, 2010. Analysis of spectral response of vegetation leaf biochemical components. Spectroscopy & Spectral Analysis, 30(11):3031-3035(5). (in Chinese)
[32] Teillet P M, Staenz K, William D J, 1997. Effects of spectral, spatial, and radiometric characteristics on remote sensing veg-etation indices of forested regions. Remote Sensing of Envi-ronment, 61(1):139-149. doi: 10.1016/S0034-4257(96)00248-9
[33] Thenkabail P S, Smith R B, Pauw E D, 2000. Hyperspectral veg-etation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2):158-182. doi: 10.1016/S0034-4257(99)00067-X
[34] Vuolo F, Neugebauer N, Bolognesi S F et al., 2013. Estimation of leaf area index using deimos-1 data:application and transfera-bility of a semi-empirical relationship between two agricultural areas. Remote Sensing, 5(3):1274-1291. doi: 10.3390/rs5031274
[35] Weiss M, Baret F, Smith G J, 2004. Review of methods for in situ leaf area index (LAI) determination:part ii. estimation of LAI, errors and sampling. Agricultural & Forest Meteorology, 121(1):37-53. doi: 10.1016/j.agrformet.2003.08.001
[36] Wu C Y, Han X Z, Niu Zet al., 2010a. An evaluation of eo-1 hy-perspectral hyperion data for chlorophyll content and leaf area index estimation. International Journal of Remote Sensing, 31(4):1079-1086. doi: 10.1080/01431160903252335
[37] Wu C Y, Niu Z, Wang J D et al., 2010b. Predicting leaf area index in wheat using angular vegetation indices derived from in situ canopy measurements. Canadian Journal of Remote Sensing, 36(4):301-312. doi: 10.5589/m10-050
[38] Wang Jihua, Huang Wenjiang, Zhao Chunjiang et al., 2003. The inversion of leaf biochemical components and grain quality indicators of winter wheat with spectral reflectance. Journal of Remote Sensing, (4):277-284. (in Chinese)
[39] Wang Q, Samuel A, John T et al., 2005. On the relationship of ndvi with leaf area index in a deciduous forest site. Remote Sensing of Environment, 94(2):244-255. doi:10.1016/j.rse. 2004.10.006
[40] Wen J G, Liu Q, Liu Q H et al., 2009. Scale effect and scale cor-rection of land-surface albedo in rugged terrain. International Journal of Remote Sensing, 30(20):5397-5420. doi: 10.1080/01431160903130903
[41] Zhang L F, Furumi S, Muramatsu K et al., 2006. Sensor-inde-pendent analysis method for hyperspectral data based on the pattern decomposition method. International Journal of Remote Sensing, 27(21):4899-4910. doi: 10.1080/01431160600702640
[42] Zhang L F, Furumi S, Muramatsu K et al., 2007. A new vegetation index based on the universal pattern decomposition method. International Journal of Remote Sensing, 28(1-2):107-124. doi: 10.1080/01431160600857402
[43] Zhang L F, Liu B, Zhang Bet al., 2010. An evaluation of the effect of the spectral response function of satellite sensors on the precision of the universal pattern decomposition method. In-ternational Journal of Remote Sensing, 31(8):2083-2090. doi: 10.1080/01431160903246675