[1] Albrecht M, Gotelli N J, 2001. Spatial and temporal niche partitioning in grassland ants. Oecologia, 126(1): 134-141.
[2] Arbea J I, Zumeta J B, 2001. Ecología de los Colémbolos (Hexapoda, Collembola) en Los Monegros (Zaragoza, España). Boletín de la Sociedad Entomologica Aragonesa, (28): 35-48. (in Spanish)
[3] Bell T, 2010. Experimental tests of the bacterial distance-decay relationship. The International Society for Microbial Ecology Journal, 4: 1357-1365.
[4] Bello F de, Vandewalle M, Reitalu T et al., 2013. Evidence for scale-and disturbance-dependent trait assembly patterns in dry semi-natural grasslands. Journal of Ecology, 101(5): 1237-1244.
[5] Bertness M D, Callaway R, 1994. Positive interactions in communities. Trends in Ecology & Evolution, 9(5): 191-193.
[6] Borcard D, Legendre P, 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 153(1-2): 51-68.
[7] Borcard D, Legendre P, Avois-Jacquet C et al., 2004. Dissecting the spatial structure of ecological data at multiple scales. Ecology, 85(7): 1826-1832.
[8] Caruso T, Chan Y, Lacap D C et al., 2011. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. The International Society for Microbial Ecology Journal, 5(9): 1406-1413.
[9] Caruso T, Trokhymets V, Bargagli R et al., 2013. Biotic interactions as a structuring force in soil communities: evidence from the micro-arthropods of an Antarctic moss model system. Oecologia, 172(2): 495-503.
[10] Decaëns T, Margerie P, Aubert M et al., 2008. Assembly rules within earthworm communities in north-western France: a regional analysis. Applied Soil Ecology, 39(3): 321-335.
[11] Diamond J M, 1975. Assembly of Species Communities. Cambridge: Harvard University Press.
[12] Dray S, Legendre P, Peres-Neto P R, 2006. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196(3-4): 483-493.
[13] Dumbrell A J, Nelson M, Helgason T et al., 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. The International Society for Microbial Ecology Journal, 4(3): 337-345.
[14] Emerson B C, Gillespie R G, 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology and Evolution, 23(11): 619-630.
[15] Fahrig L, Merriam G, 1994. Conservation of fragmented populations. Conservation Biology, 8(1): 50-59.
[16] Fuentes M, 2002. Seed dispersal and tree species diversity. Trends in Ecology & Evolution, 17(12): 550.
[17] Gao Meixiang, He Ping, Liu Dong et al, 2014. Relative roles of spatial factors, environmental filtering and biotic interactions in fine-scale structuring of a soil mite community. Soil Biology and Biochemistry, 79: 68-77.
[18] Gao Meixiang, He Ping, Sun Xin et al., 2014. Relative contributions of environmental filtering, biotic interactions and dispersal limitation in a soil collembolan community from a temperate deciduous forest in the Maoer Mountains. Chinese Science Bulletin, 59(24): 2426-2438. (in Chinese)
[19] Gao Meixiang, Sun Xin, Wu Donghui et al., 2014. Spatial autocorrelation at multi-scale of soil collembolan community in farmland of the Sanjiang Plain, Northeast China. Acta Ecologica Sinica, 34(17): 4980-4990. (in Chinese)
[20] Gotelli N J, 2000. Null model analysis of species co-occurrence patterns. Ecology, 81(9): 2606-2621.
[21] Gotelli N J, Entsminger G L, 2009. Ecosim: null models software for ecology, version 7, Acquired Intelligence Inc. and Kesey-Bear: Jericho, VT, USA. Available at: http:/garyent­sminger.com/ecosim.htm.
[22] Gotelli N J, Ulrich W, 2012. Statistical challenges in null model analysis. Oikos, 121(2): 171-180.
[23] Gotelli N J, UlrichW, 2010. The empirical Bayes approach as a tool to identify non-random species associations. Oecologia, 162(2): 463-477.
[24] Gutiérrez-López M, Jesús J B, Trigo D et al., 2010. Relationships among spatial distribution of soil microarthropods, earthworm species and soil properties. Pedobiologia, 53(6): 381-389.
[25] He Q, Bertness M D, Altieri A H, 2013. Global shifts towards positive species interactions with increasing environmental stress. Ecology Letters, 16(5): 695-706.
[26] Hortal J, Roura-Pascual N, Sanders N J et al., 2010. Understanding (insect) species distributions across spatial scales. Ecography, 33(1): 51-53.
[27] Hubbell S P, 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Princeton University Press.
[28] Hutchinson G E, 1959. Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist, 93(870): 145-159.
[29] Jiménez J J, Decaëns T, Rossi J, 2012. Soil environmental heterogeneity allows spatial co-occurrence of competitor earthworm species in a gallery forest of the Colombian 'Llanos'. Oikos, 121(6): 915-926.
[30] John R, Dalling J W, Harms K E, 2007. Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 104(3): 864-869.
[31] Kaneda S, Kaneko N, 2002. Influence of soil quality on the growth of Folsomia candida (Willem) (Collembola). Pedobiologia, 46(5): 428-439.
[32] Legendre P, Borcard D, Blanchet F G et al., 2012. PCNM: MEM spatial eigenfunction and principal coordinate analyses 2.1-2. Available at: http://127.0.0.1:20239/library/PCNM/DESCRIP TION.
[33] Legendre P, Mi X C, Ren H B et al., 2009. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90(3): 663-674.
[34] Leibold M A, Holyoak M, Mouquet N et al., 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters, 7(7): 601-613.
[35] Maraun M, Erdmann G, Fischer B M et al., 2011. Stable isotopes revisited: their use and limits for oribatid mite trophic ecology. Soil Biology and Biochemistry, 43(5): 877-882.
[36] Mayfield M M, Boni M F, Daily G C et al., 2005. Species and functional diversity of native and human-dominated plant communities. Ecology, 86(9): 2365-2372.
[37] Mayfield M M, Levine J M, 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters, 13(9): 1085-1093.
[38] Michalet R, Chen S Y, An L Z et al., 2015. Communities: are they groups of hidden interactions? Journal of Vegetation Science, 26(2): 207-218.
[39] Nachman G, Borregaard M K, 2010. From complex spatial dynamics to simple Markov chain models: do predators and prey leave footprints? Ecography, 33(1): 137-147.
[40] Nef L, 1960. Comparaison de l'efficacité de différentes variantes de l'appareil de Berlese-Tullgren. Zeitschrift für Angewandte Entomologie, 46(2): 178-199. (in Spanish)
[41] Ofiteru I D, Lunn M, Curtis T P et al., 2010. Combined niche and neutral effects in a microbial wastewater treatment community. Proceedings of the National Academy of Sciences of the United States of America, 107(35): 15345-15350.
[42] Ojala R, Huhta V, 2001. Dispersal of microarthropods in forest soil. Pedobiologia, 45(5): 443-450.
[43] Oksanen J, Blanchet F G, Kindt P et al., 2015. Vegan: Community Ecology Package. R package version 2.3-0. Available at: http://cran.ism.ac.jp/web/packages/vegan/vegan.pdf.
[44] Pianka E R, 1973. The structure of lizard communities. Annual Review of Ecology and Systematics, 4(1): 53-74.
[45] Smith T W, Lundholm J T, 2010. Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33(4): 648-655.
[46] Straalen van N M, Timmermans M J T N, Roelofs D et al., 2008. Apterygota in the spotlights of ecology, evolution and genomics. European Journal of Soil Biology, 44(5-6): 452-457.
[47] Ulrich W, 2008. Pairs—a FORTRAN program for studying pair-wise species associations in ecological matrices, Version 1.0. Available at: www.uni.torun.pl/~ulrichw.