[1] Alexeev V A, Nicolsky D J, Romanovsky V E et al., 2007. An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost. Geophysical Research Letters, 34(9): L090502. doi:  10.1029/2007GL029536
[2] Bowling L C, Lettenmaier D P, Nijssen B et al., 2003. Simulation of high-latitude hydrological processes in the Torne-Kalix Basin: PILPS phase 2(e)3: Equivalent model representation and sensitivity experiments. Global and Planetary Change, 38(1-2): 55-71. doi:  10.1016/S0921-8181(03)00005-5
[3] Cheng G D, Wu T H, 2007. Responses of permafrost to climate change and their environment significance, Qinghai-Tibet Plateau. Journal of Geophysical Research, 112 (F2): F02S03. doi:  10.1029/2006JF000631
[4] Cheng Guodong, 1990. Recent development of geocryological study in China. Acta Geographica Sinica, 45(2): 220-223. (in Chinese)
[5] Cheng Guodong, 1998. Glaciology and geocryology of China in the past 40 years: Progress and prospect. Journal of Glaciology and Geocryology, 20(3): 213-226. (in Chinese)
[6] Cheng Guodong, Zhao Lin, 2000. The problems associated with permafrost in the development of the Qinghai-Xizang Plateau. Quaternary Sciences, 20(6): 521-531. (in Chinese)
[7] Eckersten H, Blomback K, Katterer T et al., 2001. Modelling C, N, water and heat dynamics in winter wheat under climate change in southern Sweden. Agriculture Ecosystems & Environment, 86(3): 221-235. doi:  10.1016/S0167-8809(00)00284-X
[8] Gao Z Q, Chae N, Kim J et al., 2004. Modeling of surface energy partitioning, surface temperature and soil wetness in the Tibet prairie using the simple biosphere model 2(SiB2). Journal of Geophysical Research, 102(D06): 1-11. doi: 10.1029/2003JD 004089
[9] Harlan R L, 1973. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resources Research, 9(5): 1314-1323. doi:  10.1029/WR009i005p01314
[10] He Ping, Cheng Guodong, Zhu Yuanlin, 2001. The progress of study on heat and mass transfer in freezing soils. Journal of Glaciology and Geocryology, 23(1): 92-98. (in Chinese)
[11] Henderson-Sellers A, Pitman A J, Love P K et al., 1995. The project for intercomparison of land-surface parameterization schemes (PILPS)-phase-2 and phase-3. Bulletin of the American Meteorological Society, 76(4): 489-503.
[12] Henderson-Sellers A, Yang Z L, Dickinson R E, 1993. The project for intercomparison of land-surface parameterization schemes. Bulletin of the American Meteorological Society, 74(7): 1335-1350.
[13] Jansson P E, Karlberg L, 2004. Theory and practice of coupled heat and mass transfer model for soil-plant-atmosphere system. In: Zhang Hongjiang et al. (eds.). Translation. Beijing: Science Press, 1-50. (in Chinese)
[14] Jansson P E, Moon D, 2001. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environmental Modelling & Software, 16(1): 37-46. doi:  10.1016/S1364-8152(00)00062-1
[15] Li X, Cheng G D, Jin H J et al., 2008. Cryospheric change in China. Global and Planetary Change, 62: 210-218.
[16] Loumagne C, Chkir N, Normand M, 1996. Introduction of the soil vegetation-atmospheric continuum in a conceptual rainfall-runoff model. Hydrological Science Journal, 41(6): 889-902.
[17] Luo Jinming, Deng Wei, Zhang Xiaoping et al., 2008. Variation of water and salinity in sodic saline soil during frozen-thawing season. Advances in Water Sciences, 19(4): 559-566. (in Chinese)
[18] Luo Siqiong, Lv Shihua, Zhang Yu et al., 2008. Simulation analysis on land surface process of BJ site of central Tibet Plateau using CoLM. Plateau Meteorology, 27(2): 259-271. (in Chinese)
[19] Mao Xuesong, Hu Changshun, Dou Mingjian et al., 2003. Dynamic observation and analysis of moisture and temperature field coupling process in freezing soil. Journal of Glaciology and Geocryology, 25(1): 55-59. (in Chinese)
[20] McGechan M B, Graham R, Vinten A J A et al., 1997. Parameter selection and testing the soil water model SOIL. Journal of Hydrology, 195(1-4): 312-334.
[21] Nassar I N, Horton R, Flerchinger G N, 2000. Simultaneous heat and mass transfer in soil columns exposed to freezing/thawing conditions. Soil Science, 165(3): 208-216.
[22] Nicolsky D J, Romanovsky V E, Alexeev V A et al., 2007. Improved modeling of permafrost dynamics in a GCM land surface scheme. Geophysical Research Letters, 34(8): L080501. doi:  10.1029/2007GL029525
[23] Riseborough D W, Shiklomanov N I, Etzelmuller B et al., 2008. Recent advances in permafrost modeling. Permafrost and Periglacial Processes, 19(2): 137-156. doi: 10.1002/ ppp.615
[24] Scherler M, Hauck C, Hoelzle M et al., 2010. Melt water infiltration into the frozen active layer at an Alpine permafrost site. Permafrost and Perglacial Process, 21(4): 325-334.
[25] Shoop S A, Bigl S R, 1997. Moisture migration during freeze and thaw of unsaturated soils: Modeling and large scale experiments. Cold Regions Science and Technology, 25(1): 33-45. doi: 10.1016/S0165-232X (96)00015-8
[26] Wang Chenghai, Shi Rui, 2007. Simulation of the land surface processes in the western Tibet Plateau in summer. Journal of Glaciology and Geocryology, 29(1): 73-81. (in Chinese)
[27] Wang Qingchun, Li Lin, Li Dongliang et al., 2005. Response of permafrost over Qinghai Plateau to climate warming. Plateau Meteorology, 24(5): 708-713. (in Chinese)
[28] Wu Q B, Cheng G D, Ma W et al., 2006. Technical approaches on permafrost thermal stability for Qinghai-Tibet Railway. Geomechanics and Geoengineering, 1(2): 119-127. doi: 10.1080/ 17486020600777861
[29] Wu Q B, Liu Y J, 2004. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau. Cold Regions Science and Technology, 38(2-3): 85-92. doi: 10.1016/S0165-232X (03)00064-8
[30] Wu Q B, Zhang T J, 2008. Recent permafrost warming on the Qinghai-Tibet Pleateau. Journal of Geophysical Research, 113: D13108.
[31] Wu Qingbai, Shen Yongping, Shi Bin, 2003. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibet Plateau. Journal of Glaciology and Geocryology, 25(3): 250-255. (in Chinese)
[32] Wu S H, Jansson P E, Zhang X Y, 2011a. Modeling temperature, moisture and surface heat balance in bare soil under seasonal frost conditions in China. European of Journal of Soil Science, 62(6): 780-796. doi: 10.1111/j. 1365-2389.2011.01397.x
[33] Wu S H, Jansson P E, Kolari P, 2012. The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal scots pine ecosystem. Agricultural and Forest Meteorology, 156: 85-103. doi: 10.1016/j.agrformet.2012. 01.006
[34] Xiao Y, Zhao L, Dai Y J et al., 2013. Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibet) Plateau. Cold Regions Science and Technology, 87(4): 68-77. doi:  10.1016/j.coldregions.2012.12.004
[35] Xiao Yao, Zhao Lin, Li Ren et al., 2011. Seasonal variation characteristics of surface energy budget components in permafrost regions of northern Tibet Plateau. Journal of Glaciology and Geocryology, 33(5): 1033-1037. (in Chinese)
[36] Xu Xuezu, Wang Jiacheng, Zhang Lixin, 2001. Physics of Frozen Soils. Beijing: Science Press, 1-30. (in Chinese)
[37] Yang Jianping, Ding Yongjian, Chen Rensheng et al., 2004. Permafrost change and its effect on eco-environment in the source regions of the Yangtze and Yellow Rivers. Journal of Mountain Science, 22(3): 278-285. (in Chinese)
[38] Yang Meixue, Yao Tandong, 1998. A review of the study on the impact of snow cover in the Tibet an Plateau on Asian Monsoon. Journal of Glaciology and Geocryology, 20(2): 14-19. (in Chinese)
[39] Yang Yong, Chen Rensheng, Ji Xibin et al., 2010. Heat and water transfer processes on alpine meadow frozen grounds of Heihe mountainous in Northwest China. Advances in Water Science, 21(1): 30-34. (in Chinese)
[40] Yao J M, Zhao L, Ding Y J et al., 2008. The surface energy budget and evapotranspiration in the Tanggula region on the Tibet Plateau. Cold Regions Science and Technology, 52(1): 326-340. doi:  10.1016/j.coldregions.2007.04.001
[41] Zhang S L, Lövdahl L, Grip H et al., 2007. Modelling the effects of mulching and fallow cropping on water balance in the Chinese Loess Plateau. Soil & Tillage Research, 100(2-3): 311-319. doi:  10.1016/j.fcr.2006.08.006
[42] Zhang Yanwu, Lv Shihua, Li Dongliang et al., 2003. Numerical simulation of freezing soil process on Qinghai-Xizang Plateau in early winter. Plateau Meteorology, 22(5): 471-477. (in Chinese)
[43] Zhang Yu, Song Meihong, Lv Shihua et al., 2003. Frozen soil parameterization scheme coupled with mesoscale model. Journal of Glaciology and Geocryology, 25(5): 541-546. (in Chinese)
[44] Zhao Lin, 2004. The Freezing-thawing Processes of Active Layer and Changes of Seasonally Frozen Ground on the Tibet Plateau. Beijing: Chinese Academy of Sciences, 30-50. (in Chinese)
[45] Zhao Lin, Li Ren, Ding Yongjian, 2008. Simulation on the soil water-thermal characteristics of the active layer in Tanggula range. Journal of Glaciology and Permafrost Engineering, 30(6): 930-937. (in Chinese)
[46] Zhou J, Kinzelbach W, Cheng G D et al., 2013. Monitoring and modelling the influence of snow pack and organic soil on a permafrost active layer, Qinghai-Tibet Plateau of China. Cold Regions Science and Technology, 90-91: 38-52. doi: 10.1016/ j.coldregions.2013.03.003