[1] Agren A, Haei M, Kohler S J et al., 2010. Regulation of stream water dissolved organic carbon (DOC) concentrations during snowmelt;the role of discharge, winter climate and memory effects. Biogeosciences, 7:2901-2913. doi:10.5194/bg-7- 2901-2010
[2] Arar E J, Collins G B, 1997. U.S. Environmental Protection Agency Method 445.0, In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluores-cence, revision 1.2:Cincinnati, Ohio, U.S. Environmental Protection Agency National Exposure Research Laboratory, Office of Research and Development.
[3] Astoreca R, Rousseau V, Lancelot C, 2009. Colored dissolved organic matter (CDOM) in Southern North Sea waters:Optical characterization and possible origin. Estuarine Coastal and Shelf Science, 85(4):633-640. doi: 10.1016/j.ecss.2009.10.010
[4] Babin M, Stramski D, Ferrari G M et al., 2003. Variations in the light absorption coefficients of phytoplankton, nonalgal par-ticles, and dissolved organic matter in coastal waters around Europe. Journal of Geophysical Research, 108(C7):3211. doi: 10.1029/2001JC000882
[5] Binding C E, John H J, Bukata R P et al., 2008. Spectral absorp-tion properties of dissolved and particulate matter in Lake Erie. Remote Sensing of Environment, 112(4):1702-1711. doi: 10.1016/j.rse.2007.08.017
[6] Bricaud A, Morel A, Prieur L, 1981. Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domain. Limnology and Oceanography, 26(1):43-53. doi: 10.4319/lo.1981.26.1.0043
[7] Brown M, 1977. Transmission spectroscopy examinations of natural waters:C. Ultraviolet spectral characteristics of the transition from terrestrial humus to marine yellow substance. Estuarine and Coastal Marine Science, 5(3):309-317. doi: 10.1016/0302-3524(77)90058-5
[8] Busse L B, Gunkel G, 2001. Riparian alder fens-Source or sink for nutrients and dissolved organic carbon?-1. Effects of water level fluctuations. Limnologica, 31(4):307-315. doi: 10.1016/S0075-9511(01)80033-5
[9] Carder K L, Steward R G, Harvey R G et al., 1989. Marine humic and fulvic acids:Their effects on remote sensing of ocean chlorophyll. Limnology and Oceanography, 34(1):68-81. doi: 10.4319/lo.1989.34.1.0068
[10] Cory N, Buffam I, Laudon H et al., 2006. Landscape control of stream water aluminum in a boreal catchment during spring flood. Environmental Science and Technology, 40(11):3494- 3500. doi: 10.1021/es0523183
[11] De Haan H, De Boer T, 1987. Applicability of light absorbance and fluorescence as measures of concentration and molecular size of dissolved organic carbon in humic Laken Tjeukemeer. Water Research, 21(6):731-734. doi:10.1016/0043-1354(87) 90086-8
[12] Fellman J B, Petrone K C, Grierson F, 2011. Source, biogeo-chemical cycling, and fluorescence characteristics of dissolved organic matter in an agro-urban estuary. Limnology and Oceanography, 56(1):243-256. doi: 10.4319/lo.2011.56.1.0243
[13] Fichot C G, Benner R, 2011. A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters. Geophysical Research Letter, 38(3):L03610. doi: 10.1029/2010GL046152
[14] Goldman E A, Smith E M, Richardson T L, 2013. Estimation of chromophoric dissolved organic matter (CDOM) and photo-synthetic activity of estuarine phytoplankton using a mul-tiple-fixed-wavelength spectral fluorometer. Water Research, 47(4):1616-1630. doi: 10.1016/j.watres.2012.12.023
[15] Helms J R, Mao J, Schmidt-Rohr K et al., 2013a. Photochemical flocculation of terrestrial dissolved organic matter and iron. Geochimica Cosmochimica Acta, 121(15):398-413. doi: 10.1016/j.gca.2013.07.025
[16] Helms J R, Stubbins A, Perdue E M et al., 2013b. Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence. Marine Chemistry, 155:81-91. doi: 10.1016/j.marchem.2013.05.015
[17] Helms J R, Stubbin A, Ritchie J D et al., 2008. Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnology and Oceanography, 53(3):955-969. doi: 10.4319/lo.2008.53.3.0955
[18] Hood E W, Mcknight D M, Williams M W, 2003. Sources and chemical character of dissolved organic carbon across an al-pine/subalpine ecotone, Green Lakes Valley, Colorado Front Range, United States. Water Resources Research, 39(7):1188. doi: 10.1029/2002WR001738
[19] Hu C M, Lee Z P, Muller-Karger F E et al., 2006. Ocean color reveals phase shift between marine plants and yellow substance. IEEE Geoscience and Remote Sensing Letter, 3(2):262-266. doi: 10.1109/LGRS.2005.862527
[20] Jaffe R, McKnight D, Maie N et al., 2008. Spatial and temporal variations in DOM composition in ecosystems:The importance of long-term monitoring of optical property. Journal of Geo-physical Research, 113(G4):G04032. doi:10.1029/2008 JG000683
[21] Kaiser K, Zech W, 1999. Release of natural organic matter sorbed to oxides and a subsoil. Soil Science Society of American Journal, 63(5):1157-1166. doi: 10.2136/sssaj1999.6351157x
[22] Kowalczuk P, Stedmon C A, Markager S, 2006. Modeling ab-sorption by CDOM in the Baltic Sea from salinity and chloro-phyll. Marine Chemistry, 101(1-2):1-11. doi:10.1016/j.marchem. 2005.12.005
[23] Larson J H, Frost P C, Zheng Z Y et al., 2007. Effects of upstream lakes on dissolved organic matter in streams. Limnology and Oceanography, 52(1):60-69. doi:10.4319/lo.2007. 52.1.0060
[24] Lee Z P, Carder K L, Arnone R A, 2002. Deriving inherent optical properties from water color:A multiband quasi-analytical al-gorithm for optically deep waters. Applied Optics, 41(27):5755-5772. doi: 10.1364/AO.41.005755
[25] Markager W, Vincent W F, 2000. Spectral light attenuation and absorption of UV and blue light in natural waters. Limnology and Oceanography, 45(3):642-650. doi:10.4319/lo.2000.45. 3.0642
[26] Miller M P, McKnight D M, Chapra S C et al., 2009. A model of degradation and production of three pools of dissolved organic matter in an alpine lake. Limnology and Oceanography, 54(6):2213-2227. doi: 10.4319/lo.2009.54.6.2213
[27] Morel A, Gentili B, 2009. A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sensing of Environment, 113:998-1011. doi: 10.1016/j.rse.2009.01.008
[28] Sobek S, Tranvik L J, Prairie Y T et al., 2007. Patterns and regu-lation of dissolved organic carbon:An analysis of 7500 widely distributed lakes. Limnology and Oceanography, 52(3):1208-1219. doi: 10.4319/lo.2007.52.3.1208
[29] Song K S, Li L, Tedesco L P et al., 2012. Hyperspectral determi-nation of eutrophication for a water supply source via genetic algorithm-partial least squares (GA-PLS) modeling. Science of Total Environment, 426:220-232. doi:10.1016/j.scitotenv. 2012.03.058
[30] Song K, Liu D, Li L et al., 2010. Spectral absorption properties of colored dissolved organic matter (CDOM) and total suspended matter (TSM) of inland waters. Proceedings of the International Society for Optical Engineering, 7811:78110B. doi: 10.1117/12.859634
[31] Song K S, Li L, Tedesco L et al., 2013. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC flu-orescence probe. Environmental Science and Pollution Re-search, 20(8):5330-5340. doi: 10.1007/s11356-013-1527-y
[32] Spencer R G M, Aiken G R, Wickland K P et al., 2008. Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River Basin, Alaska. Global Biogeochemical Cycling, 22(4):GB4002. doi:10.1029/2008GB 003231
[33] Spencer R G M, Butler K D, Aiken G R, 2012. Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the U.S.A. Journal of Geophysical Research:Bio-geosciences, 117(G3):G03001. doi: 10.1029/2011JG001928
[34] Spencer R G M, Stubbins A, Hernes P J et al., 2009. Photo-
[35] chemical degradation of dissolved organic matter and dis-solved lignin phenols from the Congo River. Journal of Geo-physical Research, 114(G3):G03010. doi:10.1029/2009JG 000968
[36] Stedmon C A, Markager S, 2001. The optics of chromophoric dissolved organic matter (CDOM) in the Greenland Sea:An algorithm for the differentiation between marine and terrestrially derived organic matter. Limnology and Oceanography, 46(8):2087-2093. doi: 10.4319/lo.2001.46.8.2087
[37] Stedmon C A, Markager S, Søndergaard M et al., 2006. Dissolved organic matter (DOM) export to a temperate estuary:Seasonal variations and implications of land use. Estuarine Coast, 29(3):388-400. doi: 10.1007/BF02784988
[38] Sun J, Liu D, 2003. Geometric models for calculating cell biovo-lume and surface area for phytoplankton. Journal of Plankton Research, 25(11):1331-1346. doi: 10.1093/plankt/fbg096
[39] Tedesco L, Clercin N A, 2011. Algal ecology, cyanobacteria tox-icity and secondary matebolites production of the three eu-trophic drinking water supply and recreational use reservoirs in central Indiana. 2010 Research Project Final Report, Indi-anapolis, 25-29.
[40] Tranvik L J, Downing J A, Cotner J B et al., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Lim-nology and Oceanography, 54(6):2298-2314. doi:10.4319/ lo.2009.54.6_part_2.2298
[41] Twardowski M S, Boss E, Sullivan J M et al., 2004. Modeling the spectral shape of absorption by chromophoric dissolved organic matter. Marine Chemistry, 89(1-4):69-88. doi:10.1016/ j.marchem.2004.02.008
[42] Vodacek A, Blough N V, Degrandpre M D et al., 1997. Seasonal variation of CDOM and DOC in the Middle Atlantic Bight:Terrestrial inputs and photooxidation. Limnology and Ocea-nography, 42(4):674-686. doi: 10.4319/lo.1997.42.4.0674
[43] Wetzel R G, 2001. Limnology:Lake and River Ecosystems (3rd ed.). San Diego:Academic Press, 731-759.
[44] Williamson C E, Rose K C, 2010. When UV meets fresh water. Science, 329(5992):637-639. doi: 10.1126/science.1191192
[45] Wilson H, Xenopoulos M A, 2009. Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geoscience, 2(1):37-41. doi: 10.1038/ngeo391
[46] Zepp R G, Schlotzhauer P F, 1981. Comparison of photo-chemical behavior of various humic substances in water. III. Spectros-copic properties of humic substances. Chemosphere, 10(5):479-486. doi: 10.1016/0045-6535(81)90148-X
[47] Zhang Y L, Qin B Q, Zhu G W et al., 2007. Chromophoric dis-solved organic matter (CDOM) absorption characteristics in relation to fluorescence in Lake Taihu, China, a large shallow subtropical lake. Hydrobiologia, 581(1):43-52. doi: 10.1007/s10750-006-0520-6
[48] Zhang Y L, van dijk M K, Liu M L et al., 2009. The contribution of phytoplankton degradation to chromophoric dissolved or-ganic matter (CDOM) in eutrophic shallow lakes:Field and experimental evidence. Water Research, 43(18):4685-4697. doi: 10.1016/j.watres.2009.07.024
[49] Zhang Y L, Zhang E L, Yin Y et al., 2010. Characteristics and sources of chromophoric dissolved organic matter in lakes of the Yungui Plateau, China, differing in trophic state and altitude. Limnology and Oceanography, 55(6):2645-2659. doi: 10.4319/lo.2010.55.6.2645
[50] Zhang Y L, Yin Y, Zhang E L et al., 2011a. Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan Plateau, and the middle and lower reaches of the Yangtze River, China. Photochemical and Photobiological Sciences, 10(4):469-482. doi: 10.1039/C0PP00270D
[51] Zhang Y, Yin Y, Zhu G et al., 2011b. Characterizing chromophoric dissolved organic matter in Lake Tianmuhu and its catchment basin using excitation emission matrix fluorescence and parallel factor analysis. Water Research, 45(16):5110- 5122. doi: 10.1016/j.watres.2011.07.014