[1] Arnold J G, Kiniry J R, Srinivasan R et al., 2011. Soil and Water Assessment Tool: Input/Output File Documentation, Version 2009. Texas: Texas Water Resources Institute.
[2] Azizian A, Shokoohi A, 2015. Investigation of the effects of DEM creation methods on the performance of a semidistributed model: TOPMODEL. Journal of Hydrologic Engineering, 20(11): 05015005. doi:  10.1061/(ASCE)HE.1943-5584.0001204
[3] Bieger K, Hörmann G, Fohrer N, 2015. Detailed spatial analysis of SWAT-simulated surface runoff and sediment yield in a mountainous watershed in China. Hydrological Sciences Journal, 60(5): 784–800. doi:  10.1080/02626667.2014.965172
[4] Boithias L, Sauvage S, Lenica A et al., 2017. Simulating flash floods at hourly time-step using the SWAT model. Water, 9(12): 929. doi:  10.3390/w9120929
[5] Bourdin D R, Fleming S W, Stull R B, 2012. Streamflow modelling: a primer on applications, approaches and challenges. Atmosphere-Ocean, 50(4): 507–536. doi:  10.1080/07055900.2012.734276
[6] Chen E, Mackay D S, 2004. Effects of distribution-based parameter aggregation on a spatially distributed agricultural nonpoint source pollution model. Journal of Hydrology, 295(1-4): 211–224. doi:  10.1016/j.jhydrol.2004.03.029
[7] Chiang L C, Yuan Y P, 2015. The NHDPlus dataset, watershed subdivision and SWAT model performance. Hydrological Sciences Journal, 60(10): 1690–1708. doi:  10.1080/02626667.2014.916408
[8] Chow V T, 1959. Open-Channel Hydraulics. New York: McGraw-Hill.
[9] Devak M, Dhanya C T, 2017. Sensitivity analysis of hydrological models: review and way forward. Journal of Water and Climate Change, 8(4): 557–575. doi:  10.2166/wcc.2017.149
[10] Engman E T, 1986. Roughness coefficients for routing surface runoff. Journal of Irrigation and Drainage Engineering, 112(1): 39–53. doi: 10.1061/(ASCE)0733-9437(1986)112:1(39
[11] Fatichi S, Vivoni E R, Ogden F L et al., 2016. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. Journal of Hydrology, 537: 45–60. doi:  10.1016/j.jhydrol.2016.03.026
[12] Guan X J, Wang H L, Li X Y, 2015. The effect of DEM and land use spatial resolution on simulated streamflow and sediment. Global NEST Journal, 17(3): 525–535. doi:  10.30955/gnj.001250
[13] Guo R C, He X Y, 2013. Spatial variations and ecological risk assessment of heavy metals in surface sediments on the upper reaches of Hun River, Northeast China. Environmental Earth Sciences, 70(3): 1083–1090. doi:  10.1007/s12665-012-2196-8
[14] Her Y, Frankenberger J, Chaubey I et al., 2015. Threshold effects in HRU definition of the soil and water assessment tool. Transactions of the ASABE, 58(2): 367–378. doi:  10.13031/trans.58.10805
[15] Hooghoudt S B, 1940. Bijdrage tot de kennis van enige natuurkundige grootheden van de grond. Versl. Landbouwkd. Onderz., 46(14): 515–707.
[16] Jin Xin, He Chansheng, Zhang Lanhui et al., 2018. A modified groundwater module in SWAT for improved streamflow simulation in a large, arid endorheic river watershed in Northwest China. Chinese Geographical Science, 28(1): 47–60. doi:  10.1007/s11769-018-0931-0
[17] Kan G Y, He X Y, Li J R et al., 2019. Computer aided numerical methods for hydrological model calibration: an overview and recent development. Archives of Computational Methods in Engineering, 26(1): 35–59. doi:  10.1007/s11831-017-9224-5
[18] Kumar S, Mishra A, Raghuwanshi N S, 2015. Identification of critical erosion watersheds for control management in data scarce condition using the SWAT model. Journal of Hydrologic Engineering, 20(6): C4014008. doi:  10.1061/(ASCE)HE.1943-5584.0001093
[19] Lin B Q, Chen X W, Yao H X, 2020. Threshold of sub-watersheds for SWAT to simulate hillslope sediment generation and its spatial variations. Ecological Indicators, 111: 106040. doi:  10.1016/j.ecolind.2019.106040
[20] Lin B Q, Zhang D J, Chen X W et al., 2021. Threshold of watershed partition in SWAT based on separating hillslope and channel sediment simulations. Ecological Indicators, 121: 107111. doi:  10.1016/j.ecolind.2020.107111
[21] Luo Xian, Wu Wenqi, He Daming et al., 2019. Hydrological simulation using TRMM and CHIRPS precipitation estimates in the lower Lancang-Mekong River basin. Chinese Geographical Science, 29(1): 13–25. doi:  10.1007/s11769-019-1014-6
[22] Migliaccio K W, Chaubey I, 2008. Spatial distributions and stochastic parameter influences on SWAT flow and sediment predictions. Journal of Hydrologic Engineering, 13(4): 258–269. doi: 10.1061/(ASCE)1084-0699(2008)13:4(258
[23] Munoth P, Goyal R, 2019. Effects of DEM source, spatial resolution and drainage area threshold values on hydrological modeling. Water Resources Management, 33(9): 3303–3319. doi:  10.1007/s11269-019-02303-x
[24] Nazari-Sharabian M, Taheriyoun M, Karakouzian M, 2020. Sensitivity analysis of the DEM resolution and effective parameters of runoff yield in the SWAT model: a case study. Journal of Water Supply: Research and Technology—AQUA, 69(1): 39–54. doi:  10.2166/aqua.2019.044
[25] Neitsch S L, Arnold J G, Kiniry J R et al., 2011. Soil and Water Assessment Tool: Theoretical Documentation, Version 2009. Texas: Grassland, Soil and Water Research Laboratory, Agricultural Research Service, Blackland Research Center, Texas Agricultural Experiment Station.
[26] Park D, Fan H J, Zhu J J et al., 2019. Evaluation of reliable digital elevation model resolution for TOPMODEL in two mountainous watersheds, South Korea. Applied Sciences, 9(18): 3690. doi:  10.3390/app9183690
[27] PECLP (Planned Economic Committee of Liaoning Province), 1987. Land Resources Atlas of Liaoning Province. Beijing: Surveying and Mapping Press. (in Chinese)
[28] Reddy A S, Reddy M J, 2015. Evaluating the influence of spatial resolutions of DEM on watershed runoff and sediment yield using SWAT. Journal of Earth System Science, 124(7): 1517–1529. doi:  10.1007/s12040-015-0617-2
[29] Roostaee M, Deng Z, 2020. Effects of Digital Elevation Model resolution on watershed-based hydrologic simulation. Water Resources Management, 34(8): 2433–2447. doi:  10.1007/s11269-020-02561-0
[30] Savvidou E, Tzoraki O, Skarlatos D, 2014. Delineating hydrological response units in a mountainous catchment and its evaluation on water mass balance and model performance. In: Proceedings Volume 9229, Second International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2014). Paphos, Cyprus: SPIE. doi: 10.1117/12.2068592
[31] SCS, 1972. National Engineering Handbook: Supplement A, Section 4 Hydrology, Chapter 4–10. Washington DC: USDA, Soil Conservation Service.
[32] Shi X Z, Yu D S, Warner E D et al., 2004. Soil database of 1∶1 000 000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Survey Horizons, 45(4): 129–136. doi:  10.2136/sh2004.4.0129
[33] Sloan P G, Moore I D, 1984. Modeling subsurface stormflow on steeply sloping forested watersheds. Water Resources Research, 20(12): 1815–1822. doi:  10.1029/WR020i012p01815
[34] Wang Y, Montas H J, Brubaker K L et al., 2016. Impact of spatial discretization of hydrologic models on spatial distribution of nonpoint source pollution hotspots. Journal of Hydrologic Engineering, 21(12): 04016047. doi:  10.1061/(ASCE)HE.1943-5584.0001455
[35] Winchell M, Srinivasan R, Di Luzio M et al., 2010. ArcSWAT Interface for SWAT2009: Users Guide. Texas: Blackland Research and Extension Center, Texas AgriLife Research, and USDA-ARS Grassland, Soil and Water Research Laboratory.
[36] Yacoub C, Foguet A P, 2013. Slope effects on SWAT modeling in a mountainous basin. Journal of Hydrologic Engineering, 18(12): 1663–1673. doi:  10.1061/(ASCE)HE.1943-5584.0000756
[37] Ye Yin. A Study on the Relationship Between Landscape and Water Quality in the Upper Reaches Watershed of Hun River. Shenyang: Institute of Applied Ecology, Chinese Academy of Sciences. (in Chinese)
[38] Yong Yiqiu, Yu Fu’an, 2011. Evaluation of farmland fertility productivity in Qingyuan Manchu Autonomous County. Beijing: China Agriculture Press. (in Chinese)
[39] Zhang X J, Xu Y P, Fu G T, 2014. Uncertainties in SWAT extreme flow simulation under climate change. Journal of Hydrology, 515: 205–222. doi:  10.1016/j.jhydrol.2014.04.064
[40] Zhao A Z, 2016. Effect of different soil data on hydrological process modeling in Weihe River basin of Northwest China. Arabian Journal of Geosciences, 9(15): 664. doi:  10.1007/s12517-016-2695-0