[1] Alorda-Kleinglass A, Ruiz-Mallén I, Diego-Feliu M et al., 2021. The social implications of submarine groundwater discharge from an ecosystem services perspective: a systematic review. Earth-Science Reviews, 221: 103742. doi:  10.1016/j.earscirev.2021.103742
[2] Bagstad K J, Semmens D J, Winthrop R, 2013. Comparing approaches to spatially explicit ecosystem service modeling: a case study from the San Pedro River, Arizona. Ecosystem Services, 5: 40–50. doi:  10.1016/j.ecoser.2013.07.007
[3] Bai Y, Zhuang C W, Ouyang Z Y et al., 2011. Spatial characteristics between biodiversity and ecosystem services in a human-dominated watershed. Ecological Complexity, 8(2): 177–183. doi:  10.1016/j.ecocom.2011.01.007
[4] Burkhard B, Kroll F, Nedkov S et al., 2012. Mapping ecosystem service supply, demand and budgets. Ecological Indicators, 21: 17–29. doi:  10.1016/j.ecolind.2011.06.019
[5] Cai W B, Peng W T, 2021. Exploring spatiotemporal variation of carbon storage driven by land use policy in the Yangtze River Delta Region. Land, 10(11): 1120. doi:  10.3390/land10111120
[6] Chaudhary S, Tshering D, Phuntsho T et al., 2017. Impact of land cover change on a mountain ecosystem and its services: case study from the Phobjikha valley, Bhutan. Ecosystem Health and Sustainability, 3(9): 1393314. doi:  10.1080/20964129.2017.1393314
[7] Chen Xinmeng, Wang Xiaofeng, Feng Xiaoming et al., 2021. Ecosystem service trade-off and synergy on Qinghai-Tibet Plateau. Geographical Research, 40(1): 18–34. (in Chinese)
[8] Costanza R, d’Arge R, de Groot R et al., 1997. The value of the world’s ecosystem services and natural capital. Nature, 387(6630): 253–260. doi:  10.1038/387253a0
[9] Cumming G S, Buerkert A, Hoffmann E M et al., 2014. Implications of agricultural transitions and urbanization for ecosystem services. Nature, 515(7525): 50–57. doi:  10.1038/nature13945
[10] Daily G C, Polasky S, Goldstein J et al., 2009. Ecosystem services in decision making: time to deliver. Frontiers in Ecology and the Environment, 7(1): 21–28. doi:  10.1890/080025
[11] Fang Lin, Cai Jun, Liu Yanxiao et al., 2022. Dynamic evolution of ecosystem service value in Yangtze River Delta and analysis on the driving factors. Journal of Ecology and Rural Environment, 38(5): 556–565. (in Chinese)
[12] Fan X, Gu X, Yu H et al., 2021. The spatial and temporal evolution and drivers of habitat quality in the Hung River Valley. Land, 10(12): 1369. doi:  10.3390/land10121369
[13] Gao Chao, Ruan Tian, 2018. Bibliometric analysis of global research progress on coastal flooding 1995–2016. Chinese Geographical Science, 28(6): 998–1008. doi:  10.1007/s11769-018-0996-9
[14] Ge Y, Ren Z P, Fu Y Y, 2021. Understanding the relationship between dominant geo-environmental factors and rural poverty in Guizhou, China. ISPRS International Journal of Geo-Information, 10(5): 270. doi:  10.3390/ijgi10050270
[15] Gong J, Liu D Q, Zhang J X et al., 2019. Tradeoffs/synergies of multiple ecosystem services based on land use simulation in a mountain-basin area, western China. Ecological Indicators, 99: 283–293. doi:  10.1016/j.ecolind.2018.12.027
[16] Grêt-Regamey A, Weibel B, 2020. Global assessment of mountain ecosystem services using earth observation data. Ecosystem Services, 46: 101213. doi:  10.1016/j.ecoser.2020.101213
[17] Hasan S S, Zhen L, Miah M G et al., 2020. Impact of land use change on ecosystem services: a review. Environmental Development, 34: 100527. doi:  10.1016/j.envdev.2020.100527
[18] Hilton R G, West A J, 2020. Mountains, erosion and the carbon cycle. Nature Reviews Earth & Environment, 1(6): 284–299. doi:  10.1038/s43017-020-0058-6
[19] Hu B A, Kang F F, Han H R et al., 2021. Exploring drivers of ecosystem services variation from a geospatial perspective: insights from China’s Shanxi Province. Ecological Indicators, 131: 108188. doi:  10.1016/j.ecolind.2021.108188
[20] Huang S Q, Xi F R, Chen Y M et al., 2021. Land use optimization and simulation of low-carbon-oriented—a case study of Jinhua, China. Land, 10(10): 1020. doi:  10.3390/land10101020
[21] Immerzeel W W, Lutz A F, Andrade M et al., 2020. Importance and vulnerability of the world’s water towers. Nature, 577(7790): 364–369. doi:  10.1038/s41586-019-1822-y
[22] Jiang W, Wu T, Fu B J, 2021. The value of ecosystem services in China: a systematic review for twenty years. Ecosystem Services, 52: 101365. doi:  10.1016/j.ecoser.2021.101365
[23] Jun X, Chen Y D, 2001. Water problems and opportunities in the hydrological sciences in China. Hydrological Sciences Journal, 46(6): 907–921. doi:  10.1080/02626660109492885
[24] Kokkoris I P, Drakou E G, Maes J et al., 2018. Ecosystem services supply in protected mountains of Greece: setting the baseline for conservation management. International Journal of Biodiversity Science, Ecosystem Services & Management, 14(1): 45–59. doi:  10.1080/21513732.2017.1415974
[25] Lang Y Q, Song W, 2019. Quantifying and mapping the responses of selected ecosystem services to projected land use changes. Ecological Indicators, 102: 186–198. doi:  10.1016/j.ecolind.2019.02.019
[26] Li C, Wu Y M, Gao B P et al., 2021. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecological Indicators, 132: 108328. doi:  10.1016/j.ecolind.2021.108328
[27] Li J H, Bai Y, Alatalo J M, 2020. Impacts of rural tourism-driven land use change on ecosystems services provision in Erhai Lake Basin, China. Ecosystem Services, 42: 101081. doi:  10.1016/j.ecoser.2020.101081
[28] Li J L, Xu J G, Chu J L, 2019. The construction of a regional ecological security pattern based on circuit theory. Sustainability, 11(22): 6343. doi:  10.3390/su11226343
[29] Li S N, Zhu C M, Lin Y et al., 2021. Conflicts between agricultural and ecological functions and their driving mechanisms in agrofor estry ecotone areas from the perspective of land use functions. Journal of Cleaner Production, 317: 128453. doi:  10.1016/j.jclepro.2021.128453
[30] Li Y, Liu W, Feng Q et al., 2022. Quantitative assessment for the spatiotemporal changes of ecosystem services, tradeoff-synergy relationships and drivers in the semi-arid regions of China. Remote Sensing, 14(1): 239. doi:  10.3390/rs14010239
[31] Li Z Z, Cheng X Q, Han H R, 2020. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China. Forests, 11(5): 584. doi:  10.3390/f11050584
[32] Liang X, Guan Q F, Clarke K C et al., 2021. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: a case study in Wuhan, China. Computers, Environment and Urban Systems, 85: 101569. doi:  10.1016/j.compenvurbsys.2020.101569
[33] Liu Chunfang, Xue Shuyan, Wu Yahan, 2019. Ecological environmental effects of land consolidation: mechanism of action and application path. Chinese Journal of Applied Ecology, 30(2): 685–693. (in Chinese)
[34] Liu J F, Chen L, Yang Z H et al., 2022. Unraveling the spatio-temporal relationship between ecosystem services and socioeconomic development in Dabie Mountain area over the last 10 years. Remote Sensing, 14(5): 1059. doi:  10.3390/rs14051059
[35] Liu L B, Wang Z, Wang Y et al., 2019. Trade-off analyses of multiple mountain ecosystem services along elevation, vegetation cover and precipitation gradients: a case study in the Taihang Mountains. Ecological Indicators, 103: 94–104. doi:  10.1016/j.ecolind.2019.03.034
[36] Liu Xiaopeng, Chen Xiao, Hua Kaiping et al., 2018. Effects of land use change on ecosystem services in arid area ecological migration. Chinese Geographical Science, 28(5): 894–906. doi:  10.1007/s11769-018-0971-5
[37] Liu Y S, Zang Y Z, Yang Y Y, 2020. China’s rural revitalization and development: theory, technology and management. Journal of Geographical Sciences, 30(12): 1923–1942. doi:  10.1007/s11442-020-1819-3
[38] Long H L, Li T T, 2012. The coupling characteristics and mechanism of farmland and rural housing land transition in China. Journal of Geographical Sciences, 22(3): 548–562. doi:  10.1007/s11442-012-0946-x
[39] Lü Rongfang, Zhao Wenpeng, Tian Xiaolei et al., 2021. The trade-offs among ecosystem services and their response to socio-ecological environment in Qilian Mountains. Journal of Glaciology and Geocryology, 43(3): 928–938. (in Chinese)
[40] Mengist W, Soromessa T, Legese G, 2020. Ecosystem services research in mountainous regions: a systematic literature review on current knowledge and research gaps. Science of the Total Environment, 702: 134581. doi:  10.1016/j.scitotenv.2019.134581
[41] Nedkov S, Borisova B, Nikolova M et al., 2021. A methodological framework for mapping and assessment of ecosystem services provided by the natural heritage in Bulgaria. Journal of the Bulgarian Geographical Society, 45: 7–18. doi:  10.3897/jbgs.e78680
[42] Orchard S, Glover D, Karki S T et al., 2020. Exploring synergies and trade-offs among the sustainable development goals: collective action and adaptive capacity in marginal mountainous areas of India. Sustainability Science, 15(6): 1665–1681. doi:  10.1007/s11625-019-00768-8
[43] Othoniel B, Rugani B, Heijungs R et al., 2019. An improved life cycle impact assessment principle for assessing the impact of land use on ecosystem services. Science of the Total Environment, 693: 133374. doi:  10.1016/j.scitotenv.2019.07.180
[44] Pan N H, Guan Q Y, Wang Q Z et al., 2021. Spatial differentiation and driving mechanisms in ecosystem service value of arid region: a case study in the middle and lower reaches of Shule River Basin, NW China. Journal of Cleaner Production, 319: 128718. doi:  10.1016/j.jclepro.2021.128718
[45] Peng K F, Jiang W G, Deng Y et al., 2020. Simulating wetland changes under different scenarios based on integrating the random forest and CLUE-S models: a case study of Wuhan Urban Agglomeration. Ecological Indicators, 117: 106671. doi:  10.1016/j.ecolind.2020.106671
[46] Peng K F, Jiang W G, Ling Z Y et al., 2021. Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: a case study of the Wuhan urban agglomeration. Journal of Cleaner Production, 307: 127321. doi:  10.1016/j.jclepro.2021.127321
[47] Perrigo A, Hoorn C, Antonelli A, 2020. Why mountains matter for biodiversity. Journal of Biogeography, 47(2): 315–325. doi:  10.1111/jbi.13731
[48] Qiu J X, Carpenter S R, Booth E G et al., 2020. Spatial and temporal variability of future ecosystem services in an agricultural landscape. Landscape Ecology, 35(11): 2569–2586. doi:  10.1007/s10980-020-01045-1
[49] Rau A L, von Wehrden H, Abson D J, 2018. Temporal dynamics of ecosystem services. Ecological Economics, 151: 122–130. doi:  10.1016/j.ecolecon.2018.05.009
[50] Seppelt R, Dormann C F, Eppink F V et al., 2011. A quantitative review of ecosystem service studies: approaches, shortcomings and the road ahead. Journal of Applied Ecology, 48(3): 630–636. doi:  10.1111/j.1365-2664.2010.01952.x
[51] Shao H M, Kim G, Li Q et al., 2021. Web of science-based green infrastructure: a bibliometric analysis in CiteSpace. Land, 10(7): 711. doi:  10.3390/land10070711
[52] Sun K K, Xing Z Y, Cao X et al., 2021. The regime of rural ecotourism stakeholders in poverty-stricken areas of China: implications for rural revitalization. International Journal of Environmental Research and Public Health, 18(18): 9690. doi:  10.3390/ijerph18189690
[53] Sun Q, Qi W, Yu X Y, 2021. Impacts of land use change on ecosystem services in the intensive agricultural area of North China based on Multi-scenario analysis. Alexandria Engineering Journal, 60(1): 1703–1716. doi:  10.1016/j.aej.2020.11.020
[54] Terzi S, Torresan S, Schneiderbauer S et al., 2019. Multi-risk assessment in mountain regions: a review of modelling approaches for climate change adaptation. Journal of Environmental Management, 232: 759–771. doi:  10.1016/j.jenvman.2018.11.100
[55] Ureta J C, Clay L, Motallebi M et al., 2021. Quantifying the landscape’s ecological benefits—an analysis of the effect of land cover change on ecosystem services. Land, 10(1): 21. doi:  10.3390/land10010021
[56] Vu T T, Shen Y, Lai H Y, 2022. Strategies to mitigate the deteriorating habitat quality in Dong Trieu District, Vietnam. Land, 11(2): 305. doi:  10.3390/land11020305
[57] Wu L, Sun C, Fan F, 2021. Estimating the characteristic spatiotemporal variation in habitat quality using the invest model—a case study from Guangdong-Hong Kon-Macao Greater Bay Area. Remote Sensing, 13(5): 1008. doi:  10.3390/rs13051008
[58] Wang Yu, Fu Bitian, Lü Yongpeng et al., 2016. Assessment of the social values of ecosystem services based on SolVES model: a case study of Wusong Paotaiwan Wetland Forest Park, Shanghai, China. Chinese Journal of Applied Ecology, 27(6): 1767–1774. (in Chinese)
[59] Wang Y H, Chen Y F, Chi Y et al., 2018. Village-level multidimensional poverty measurement in China: where and how. Journal of Geographical Sciences, 28(10): 1444–1466. doi:  10.1007/s11442-018-1555-0
[60] Wang Z Y, Li X, Mao Y T et al., 2022. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: a case study of Bortala, China. Ecological Indicators, 134: 108499. doi:  10.1016/j.ecolind.2021.108499
[61] Weitzman J, 2019. Applying the ecosystem services concept to aquaculture: a review of approaches, definitions, and uses. Ecosystem Services, 35: 194–206. doi:  10.1016/j.ecoser.2018.12.009
[62] Williams J R, Arnold J G, 1997. A system of erosion—sediment yield models. Soil Technology, 11(1): 43–55. doi:  10.1016/S0933-3630(96)00114-6
[63] Wu Z N, Zhang F Y, Di D Y et al., 2022. Study of spatial distribution characteristics of river eco-environmental values based on emergy-GeoDa method. Science of the Total Environment, 802: 149679. doi:  10.1016/j.scitotenv.2021.149679
[64] Xu J, Xie G D, Xiao Y et al., 2018. Dynamic analysis of ecological environment quality combined with water conservation changes in national key ecological function areas in China. Sustainability, 10(4): 1202. doi:  10.3390/su10041202
[65] Yang Jie, Xie Baopeng Zhang Degang, 2020. Spatio-temporal variation of water yield and its response to precipitation and land use change in the Yellow River Basin based on InVEST model. Chinese Journal of Applied Ecology, 31(8): 2731–2739. (in Chinese)
[66] Yang Y J, Wang K, Liu D et al., 2020. Effects of land-use conversions on the ecosystem services in the agro-pastoral ecotone of northern China. Journal of Cleaner Production, 249: 119360. doi:  10.1016/j.jclepro.2019.119360
[67] Yu H R, Gu X C, Liu G H et al., 2022. Construction of regional ecological security patterns based on multi-criteria decision making and circuit theory. Remote Sensing, 14(3): 527. doi:  10.3390/rs14030527
[68] Yuan Y J, Chen D X, Wu S H et al., 2019. Urban sprawl decreases the value of ecosystem services and intensifies the supply scarcity of ecosystem services in China. Science of the Total Environment, 697: 134170. doi:  10.1016/j.scitotenv.2019.134170
[69] Zhang Bin, Li Lu, Xia Qiuyue et al., 2022. Land use change and its impact on carbon storage under the constraints of ‘three lines’: a case study of Wuhan City circle. Acta Ecologica Sinca, 42(6): 2265–2280. (in Chinese)
[70] Zhang H Z, Yang Q Y, Zhang H M et al., 2021. Optimization of land use based on the source and sink landscape of ecosystem services: a case study of Fengdu county in the Three Gorges Reservoir Area, China. Land, 10(11): 1242. doi:  10.3390/land10111242
[71] Zhang S H, Zhong Q L, Cheng D L et al., 2022. Coupling coordination analysis and prediction of landscape ecological risks and ecosystem services in the Min River Basin. Land, 11(2): 222. doi:  10.3390/land11020222
[72] Zhao M Y, Peng J, Liu Y X et al., 2018. Mapping watershed-level ecosystem service bundles in the Pearl River Delta, China. Ecological Economics, 152: 106–117. doi:  10.1016/j.ecolecon.2018.04.023
[73] Zheng H, Wang L J, Wu T, 2019. Coordinating ecosystem service trade-offs to achieve win-win outcomes: a review of the approaches. Journal of Environmental Sciences, 82: 103–112. doi:  10.1016/j.jes.2019.02.030
[74] Zhou M M, Deng J S, Lin Y et al., 2019. Identifying the effects of land use change on sediment export: integrating sediment source and sediment delivery in the Qiantang River Basin, China. Science of the Total Environment, 686: 38–49. doi:  10.1016/j.scitotenv.2019.05.336