[1] Abbas A, Khan S, 2007. Using remote sensing techniques for appraisal of irrigated soil salinity. MODSIM 2007:International Congress on Modelling and simulation:Land, Water and Environmental Management:Integrated Systems for Sustaina-bility.
[2] Abou Samra Rasha M, Ali R R, 2018. The development of an overlay model to predict soil salinity risks by using remote sensing and GIS techniques:a case study in soils around Idku Lake, Egypt. Environmental Monitoring and Assessment, 190(12):706-722. doi: 10.1007/s10661-018-7079-3
[3] Aldabaa A A A, Weindorf D C, Chakraborty S et al., 2015. Com-bination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma, 239:34-46. doi: 10.1016/j.geoderma.2014.09.011
[4] Allbed A, Kumar L, 2013. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology:a review. Advances in Remote Sensing, 2:373-385. doi:10.4236/ars. 2013.24040
[5] Allbed A, Kumar L, Sinha P, 2014. Mapping and modelling spatial variation in soil salinity in the Al Hassa oasis based on remote sensing indicators and regression techniques. Remote Sensing, 6:1137-1157. doi: 10.3390/rs6021137
[6] Bannari A, Guedon A M, El-Harti A et al., 2008. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Communications in Soil Science and Plant Analysis, 39:2795-2811. doi: 10.1080/0010362080243271
[7] Bao Shidan, 2000. Soil and Agricultural Chemistry Analysis. Bei-jing:Chinese Agricultural press. (in Chinese)
[8] Bouaziz M, Matschullat J, Gloaguen R, 2011. Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil. Comptes Rendus Geoscience, 343:795-803. doi: 10.1016/j.crte.2011.09.003
[9] Breiman L, 2001. Classification and regression by randomForest. Machine Learning, 45(1):5-32. doi: 10.1023/a:1010933404324
[10] Cai S M, Zhang R Q, Liu L M et al., 2010. A method of salt-affected soil information extraction based on a support vector machine with texture features. Mathematical and Computer Modelling, 51:1319-1325. doi:10.1016/j.mcm. 2009.10.037
[11] Conrad O, Bechtel B, Bock M et al., 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development Discussions. 8(2):2271-2312. doi: 10.5194/gmdd-8-2271-2015
[12] Dou C Y, Kang Y H, Wan S Q et al., 2011. Soil salinity changes under cropping with lycium barbarum l. and irrigation with sa-line-sodic water. Pedosphere, 21:539-548. doi: 10.1016/S1002-0160(11)60156-2
[13] Douaoui A E K, Nicolas H, Walter C, 2006. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 134:217-230. doi:10.1016/j.geod erma.2005.10.009
[14] El Harti A, Lhissou R, Chokmani K et al., 2016. Spatiotemporal monitoring of soil salinization in irrigated Tadla plain (Morocco) using satellite spectral indices. International Journal of Applied Earth Observation and Geoinformation, 50:64-73. doi:10.1016/j.jag. 2016.03.008
[15] Elnaggar Abdelhamid A, Noller Jay S, 2010. Application of re-mote-sensing data and decision tree analysis to mapping salt-affected soils over large areas. Remote Sensing, 2:151-165. doi: 10.3390/rs2010151
[16] Fan X W, Liu Y B, Tao J M et al., 2015. Soil salinity retrieval from advanced multi-spectral sensor with partial least square regression. Remote Sensing, 7:488-511. doi: 10.3390/rs70100488
[17] Farifteh J, Van der Meer F, Atzberger C et al., 2007. Quantitative analysis of salt-affected soil reflectance spectra:a comparison of two adaptive methods (PLSR and ANN). Remote Sensing of Environment, 110:59-78. doi: 10.1016/j.rse.2007.02.005
[18] Gill Bruce C, Terry Alister D, 2016. Keeping salt on the farm-Evaluation of an on-farm salinity management system in the Shepparton irrigation region of South-East Australia. Agricul-tural Water Management, 164:291-303. doi: 10.1016/j.agwat.2015.10.014
[19] Huang Yajie, Li Zhen, Ye Huichun et al., 2019. Mapping soil electrical conductivity using Ordinary Kriging combined with Back-propagation network. Chinese Geographical Science, 29(2):270-282. doi: 10.1007/s11769-019-1027-1
[20] Immitzer M, Atzberger C, Koukal T, 2012. Tree Species Classifi-cation with Random Forest Using Very High Spatial Resolution 8-Band WorldView-2 Satellite Data. Remote Sensing, 4:2661-2693. doi: 10.3390/rs4092661
[21] Jiang H, Rusuli Y, Amuti T, et al., 2019. Quantitative assessment of soil salinity using multi-source remote sensing data based on the support vector machine and artificial neural network. International Journal of Remote Sensing, 40(1):284-306, doi: 10.1080/01431161.2018.1513180
[22] Khan N M, Rastoskuev V V, Sato Y et al., 2005. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77:96-109. doi:10.1016/j. agwat.2004.09.038
[23] Konukcu F, Gowing J W, Rose D A, 2006. Dry drainage:A sus-tainable solution to waterlogging and salinity problems in irri-gation areas? Agricultural Water Management, 83:1-12. doi: 10.1016/j.agwat.2005.09.003
[24] Koohafkan P, Stewart B A, 2008. Water and Cereals in Drylands. The Food and Agriculture Organization of the United Nations and Earth scan.
[25] Wang K, Zhang C R, Li W D, 2012. Comparison of geographically weighted regression and regression kriging for estimating the spatial distribution of soil organic matter. GIScience and Remote Sensing, 49:915-932. doi:10.2747/1548-1603. 49.6.915
[26] Li Zhen, Zhang Shiwen, Cao Meng et al., 2018. Spatial interpola-tion of soil mechanical composition based on the spherical co-ordinate transform method. Transactions of the Chinese society for Agricultural Machinery, 49(03):295-302. (in Chinese)
[27] Liu M L, Liu X N, Jiang J L et al., 2013. Artificial Neural Network and Random Forest Approaches for Modeling of Sea Surface Salinity. International Journal of Remote Sensing Applications, 3(4):229-235. doi: 10.14355/ijrsa.2013.0304.08
[28] Lu D S, Li G Y, Moran E et al., 2014. The roles of textural images in improving land-cover classification in the Brazilian Amazon. International Journal of Remote Sensing, 35:8188-8207. doi: 10.1080/01431161.2014.980920
[29] Lu W, Lu D S, Wang G X G et al., 2018. Examining soil organic carbon distribution and dynamic change in a hickory plantation region with Landsat and ancillary data. Catena, 165:576-589. doi: 10.1016/j.catena.2018.03.007
[30] Ma L G, Yang S T, Simayi Z et al., 2018. Modeling variations in soil salinity in the oasis of Junggar Basin, China. Land Deg-radation and Development, 29:551-562. doi: 10.1002/ldr.2890
[31] Nanni M R, Demattê J A M, 2006. Spectral reflectance method-ology in comparison to traditional soil analysis. Soil Science Society of America Journal, 70:393-407. doi: 10.2136/sssaj2003.0285
[32] Peng J, Biswas A, Jiang Q S et al., 2019. Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma, 337:1309-1349. doi:10.1016/j.geoderma. 2018.08.006
[33] Rodriguez-Galiano V, Sanchez-Castillo M, Chica-Olmo M et al., 2015. Machine learning predictive models for mineral pro-spectivity:An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71:804-818. doi: 10.1016/j.oregeorev.2015.01.001
[34] Shrestha R P, 2006. Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand. Land Degradation and Development, 17:677-689. doi: 10.1002/ldr.752
[35] Sidike A, Zhao S H, Wen Y M, 2014. Estimating soil salinity in Pingluo county of China using QuickBird data and soil reflec-tance spectra. International Journal of Applied Earth Obser-vation and Geoinformation, 26:156-175. doi:10.1016/j.jag. 2013.06.002
[36] Taghizadeh-Mehrjardi R, Ayoubi S, Namazi Z et al., 2016. Pre-diction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming. Arid Land Research and Management, 30(1):49-64. doi:10.1080/15324982. 2015.1046092
[37] Vermeeulen D, Van Niekert A, 2017. Machine learning perfor-mance for predicting soil salinity using different combinations of geomorphometric covariates. Geoderma, 299:1-12. doi:10.1016/j. geoderma.2017.03.013
[38] Wang B, Waters C, Orgill S et al., 2018a. Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia. Ecological Indicators, 88:425-438. doi:10.1016/j. ecolind.2018.01.049
[39] Wang B, Waters C, Orgill S et al., 2018b. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Science of Total Environment, 630:367-378. doi: 10.1016/j.scitotenv.2018.02.204
[40] Whitney K, Scudiero E, El-Askary H M et al., 2018. Validating the use of MODIS time series for salinity assessment over ag-ricultural soils in California, USA. Ecological Indicators, 93:889-898. doi: 10.1016/j.ecolind.2018.05.069
[41] Wu C S, Liu G H, Huang C, 2016. Prediction of soil salinity in the Yellow River Delta using geographically weighted regression. Archives of Agronomy and Soil Science, 63:928-941. doi: 10.1080/03650340.2016.1249475
[42] Yu R H, Liu T X, Xu Y P et al., 2010. Analysis of salinization dynamics by remote sensing in Hetao Irrigation District of North China. Agriculture Water Management. 97:1952-1960. Doi: 10.1016/j.agwat.2010.03.009
[43] Zhang T T, Qi J G, Gao Y et al., 2015. Detecting soil salinity with MODIS time series VI data. Ecological Indicators, 52:480-489. doi: 10.1016/j.ecolind.2015.01.004
[44] Zhang Y P, Hu K L, Li B G et al., 2009. Spatial distribution pattern of soil salinity and saline soil in Yinchuan plain of China. Transactions of the CSAE, 25(7):19-24. (in Chinese)
[45] Zhou D, Lin Z L, Liu L M, 2012. Regional land salinization as-sessment and simulation through cellular Automaton-Markov modeling and spatial pattern analysis. Science of Total Envi-ronment, 439:260-274. doi: 10.1016/j.scitotenv.2012.09.013