留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China

LU Yupeng CHEN Wei YAO Jing HUANG Yanqing ZHANG Yue LIU Huanchu HE Xingyuan

LU Yupeng, CHEN Wei, YAO Jing, HUANG Yanqing, ZHANG Yue, LIU Huanchu, HE Xingyuan. Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China[J]. 中国地理科学, 2020, 30(4): 614-630. doi: 10.1007/s11769-020-1138-8
引用本文: LU Yupeng, CHEN Wei, YAO Jing, HUANG Yanqing, ZHANG Yue, LIU Huanchu, HE Xingyuan. Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China[J]. 中国地理科学, 2020, 30(4): 614-630. doi: 10.1007/s11769-020-1138-8
LU Yupeng, CHEN Wei, YAO Jing, HUANG Yanqing, ZHANG Yue, LIU Huanchu, HE Xingyuan. Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China[J]. Chinese Geographical Science, 2020, 30(4): 614-630. doi: 10.1007/s11769-020-1138-8
Citation: LU Yupeng, CHEN Wei, YAO Jing, HUANG Yanqing, ZHANG Yue, LIU Huanchu, HE Xingyuan. Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China[J]. Chinese Geographical Science, 2020, 30(4): 614-630. doi: 10.1007/s11769-020-1138-8

Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China

doi: 10.1007/s11769-020-1138-8
基金项目: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFC0500306)

详细信息
    通讯作者:

    CHEN Wei. E-mail:chenwei@iae.ac.cn

    HE Xingyuan. E-mail:Hexy@iae.ac.cn

Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China

Funds: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFC0500306)

  • 摘要: This study aims to verify the concept of niches at multiple spatial scales in plant communities. To this end, we analyzed the niche characteristic of Rhododendron dauricum plant communities in Northeast China at three spatial scales. At the local scale, we calculated the Importance Value (IV) of species in five communities in the north of the Da Hinggan Mountains. At the intermediate scale, we examined five communities in their entirety, calculated the niche breadth of the species, and integrated niche overlap and interspecific association to analyze interspecific relationships. Further, the generalized additive model (GAM) was used to analyze the impact of topography and soil factors on niche characteristics. At the regional scale, we analyzed the geographical distribution of dominant species of R. dauricum plant communities in Northeast China and used principal component analysis (PCA) to analyze the impact of geographical and climate factors on species distribution. The results show that at the local scale, the IV of the species in each community varies widely. At the intermediate scale, species with a wide niche breadth tend to have a high value for IV. Larix gmelinii, Betula platyphylla, R. dauricum, Ledum palustre, and Vaccinium vitis-idaea had a relatively wide niche breadth and a high niche overlap, and the interspecific associations were almost all positive. Elevation and soil nutrients were the most dominant environmental factors. At the regional scale, species with a wide niche breadth tend to have a wide range of distribution, and temperature and precipitation were the most dominant environmental factors. This study suggests that the niche characteristics at three scales are both related and different. Niche characteristics at the local scale were various and labile, and niche characteristics at the intermediate and regional scales were relatively regular. These results show some degree of consistency with previous studies from an evolutionary perspective. The action mechanisms of these communities are related to differences in the dominant environmental factors. In addition, the integration of niche overlap and interspecific association determine interspecific relationships more accurately.
  • [1] Adler P B, Ellner S P, Levine J M, 2010. Coexistence of perennial plants:an embarrassment of niches. Ecology Letters, 13(8):1019-1029. doi: 10.1111/j.1461-0248.2010.01496.x
    [2] Anthwal S, Bhatt A B, Nautiyal B P et al., 2008. Vegetation structure, niche width, niche overlap and types of competition in temperate grazingland of Garhwal Himalaya, India. The Environmentalist, 28(3):261-273. doi: 10.1007/s10669-007-9137-1
    [3] Arroyo-Rodríguez V, Mandujano S, 2006. The importance of tropical rain forest fragments to the conservation of plant spe-cies diversity in Los Tuxtlas, Mexico. Biodiversity & Conser-vation, 15(13):4159-4179. doi: 10.1007/s10531-005-3374-8
    [4] Babbel G R, Selander R K, 1974. Genetic variability in edaphically restricted and widespread plant species. Evolution, 28(4):619-630. doi: 10.1111/j.1558-5646.1974.tb00794.x
    [5] Boulangeat I, Lavergne S, Van Es J et al., 2012. Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients. Journal of Biogeog-raphy, 39(1):204-214. doi:10.1111/j.1365-2699.2011. 02581.x
    [6] Brooker R W, Maestre F T, Callaway R M et al., 2008. Facilitation in plant communities:the past, the present, and the future. Journal of Ecology, 96(1):18-34. doi:10.1111/j.1365-2745. 2007.01295.x
    [7] Bulleri F, Bruno J F, Silliman B R et al., 2016. Facilitation and the niche:implications for coexistence, range shifts and ecosystem functioning. Functional Ecology, 30(1):70-78. doi: 10.1111/1365-2435.12528
    [8] Callaway R M, Brooker R W, Choler P et al., 2002. Positive in-teractions among alpine plants increase with stress. Nature, 417(6891):844-848. doi: 10.1038/nature00812
    [9] Chai Zongzheng, Wang Dexiang, Zhang Linan et al., 2012. Niche characteristics of main plant populations in natural Pinus tab-ulaeformis communities in Qinling Mountains, Northwest China. Chinese Journal of Ecology, 31(8):1917-1923. (in Chinese)
    [10] Chen Hongwei, Hu Yuanman, Chang Yu et al., 2011. Simulating impact of larch caterpillar (Dendrolimus superans) on fire re-gime and forest landscape in Da Hinggan Mountains, Northeast China. Chinese Geographical Science, 21(5):575. doi: 10.1007/s11769-011-0494-9
    [11] Estes L, Elsen P R, Treuer T et al., 2018. The spatial and temporal domains of modern ecology. Nature Ecology Evolution, 2:819-826. doi: 10.1038/s41559-018-0524-4
    [12] Fajardo A, McIntire E J B, 2011. Under strong niche overlap conspecifics do not compete but help each other to survive:facilitation at the intraspecific level. Journal of Ecology, 99(2):642-650. doi: 10.1111/j.1365-2745.2010.01771.x
    [13] Fajardo A, Siefert A, 2019. The interplay among intraspecific leaf trait variation, niche breadth and species abundance along light and soil nutrient gradients. Oikos, 128(6):881-891. doi: 10.1111/oik.05849
    [14] Gainsbury A, Meiri S, 2017. The latitudinal diversity gradient and interspecific competition:no global relationship between lizard dietary niche breadth and species richness. Global Ecology and Biogeography, 26(5):563-572. doi: 10.1111/geb.12560
    [15] Geange S W, Pledger S, Burns K C et al., 2011. A unified analysis of niche overlap incorporating data of different types. Methods in Ecology and Evolution, 2(2):175-184. doi: 10.1111/j.2041-210X.2010.00070.x
    [16] Gotelli N J, McCabe D J, 2002. Species co-occurrence:a me-ta-analysis of J. M. Diamond's assembly rules model. Ecology, 83(8):2091-2096. doi: 10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2
    [17] Gouveia S F, Hortal J, Tejedo M et al., 2014. Climatic niche at physiological and macroecological scales:the thermal toler-ance-geographical range interface and niche dimensionality. Global Ecology and Biogeography, 23(4):446-456. doi: 10.1111/geb.12114
    [18] Gómez-Aparicio L, Zamora R, Gómez J M et al., 2004. Applying plant facilitation to forest restoration:a meta-analysis of the use of shrubs as nurse plants. Ecological Applications, 14(4):1128-1138. doi: 10.1890/03-5084
    [19] Han Dayong, Li Haiyan, Yang Yunfei, 2009. β-diversity patterns of plant community in fragmented habitat in a degenerated meadow in Songnen Plain, China. Chinese Geographical Sci-ence, 19(4):375-381. Doi: 10.1007/S11769-009-0375-7
    [20] Herrera C M, Pozo M I, Bazaga P, 2012. Jack of all nectars, master of most:DNA methylation and the epigenetic basis of niche width in a flower-living yeast. Molecular Ecology, 21(11):2602-2616. doi: 10.1111/j.1365-294X.2011.05402.x
    [21] Hirst M J, Griffin P C, Sexton J P et al., 2017. Testing the niche-breadth-range-size hypothesis:habitat specialization vs. performance in Australian alpine daisies. Ecology, 98(10):2708-2724. doi: 10.1002/ecy.1964
    [22] Hurlbert S H, 1969. A coefficient of interspecific assciation. Ecology, 50(1):1-9. doi: 10.2307/1934657
    [23] Hurlbert S H, 1978. The measurement of niche overlap and some relatives. Ecology, 59(1):67-77. doi: 10.2307/1936632
    [24] Jiang N, Man L, Zhang W et al., 2016. Chloroplast view of the population genetics and phylogeography of a widely distributed shrub species, Rhododendron dauricum (Ericaceae). Systematic Botany, 41(3):626-633. doi:10.1600/036364416X 692343
    [25] Kambach S, Lenoir J, Decocq G et al., 2019. Of niches and dis-tributions:range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography, 42(3):467-477. doi: 10.1111/ecog.03495
    [26] Kotta J, Möller T, Orav-Kotta H et al., 2014. Realized niche width of a brackish water submerged aquatic vegetation under current environmental conditions and projected influences of climate change. Marine Environmental Research, 102:88-101. doi: 10.1016/j.marenvres.2014.05.002
    [27] Kylafis G, Loreau M, 2008. Ecological and evolutionary con-sequences of niche construction for its agent. Ecology Letters, 11(10):1072-1081. doi:10.1111/j.1461-0248.2008. 01220.x
    [28] Laliberté E, Zemunik G, Turner B L, 2014. Environmental filtering explains variation in plant diversity along resource gradients. Science, 345(6204):1602-1605. doi:10.1126/science. 1256330
    [29] Lamanna C, Blonder B, Violle C et al., 2014. Functional trait space and the latitudinal diversity gradient. Proceedings of the National Academy of Sciences of the United States of America, 111(38):13745-13750. doi: 10.1073/pnas.1317722111
    [30] Lawesson J E, Oksanen J, 2002. Niche characteristics of Danish woody species as derived from coenoclines. Journal of Vege-tation Science, 13(2):279-290. doi:10.1111/j.1654-1103. 2002.tb02048.x
    [31] Levin S A, 1992. The problem of pattern and scale in ecology:the Robert H. MacArthur award lecture. Ecology, 73(6):1943-1967. doi: 10.2307/1941447
    [32] Levins R, 1968. Evolution in Changing Environments:Some Theoretical Explorations. Princeton:Princeton University Press.
    [33] Li Yuehui, Wu Wen, Xiong Zaiping et al. 2014. Effects of forest roads on habitat pattern for sables in Da Hinggan Mountains, northeasten China. Chinese Geographical Science, 24(5), 587-598. doi: 10.1007/s11769-014-0674-5
    [34] Liang L, Li L, Liu Q, 2011a. Precipitation variability in Northeast China from 1961 to 2008. Journal of Hydrology, 404(1-2), 67-76. doi: 10.1016/j.jhydrol.2011.04.020
    [35] Liang Yu, He Hong S, Lewis Bernard L, 2011b. Responses of tree species to climate warming at different spatial scales. Chinese Geographical Science, 21(4), 427. doi: 10.1007/s11769-011-0484-y
    [36] Marinšek A, Čarni A, Šilc U et al., 2015. What makes a plant species specialist in mixed broad-leaved deciduous forests? Plant Ecology, 216(10):1469-1479. doi: 10.1007/s11258-015-0527-z
    [37] Mason N W H, de Bello F, Doležal J et al., 2011. Niche overlap reveals the effects of competition, disturbance and contrasting assembly processes in experimental grassland communities. Journal of Ecology, 99(3):788-796. doi:10.1111/j.1365-2745. 2011.01801.x
    [38] Mittal A K, Kaler A, Banerjee U C, 2012. Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron dauricum. Nano Biomedicine and Engineering, 4(3):118-124. doi:10.5101/nbe. v4i3.p118-124
    [39] Mori A S, Shiono T, Koide D et al., 2013. Community assembly processes shape an altitudinal gradient of forest biodiversity. Global Ecology and Biogeography, 22(7):878-888. doi: 10.1111/geb.12058
    [40] Morin X, Lechowicz M J, 2013. Niche breadth and range area in North American trees. Ecography, 36(3):300-312. doi: 10.1111/j.1600-0587.2012.07340.x
    [41] Mouillot D, Stubbs W, Faure M et al., 2005. Niche overlap esti-mates based on quantitative functional traits:a new family of non-parametric indices. Oecologia, 145(3):345-353. doi: 10.1007/s00442-005-0151-z
    [42] Murphy S J, Audino L D, Whitacre J et al., 2015. Species associa-tions structured by environment and land-use history promote beta-diversity in a temperate forest. Ecology, 96(3):705-715. doi: 10.1890/14-0695.1
    [43] Nguyen H H, Uria-Diez J, Wiegand K et al., 2016. Spatial distri-bution and association patterns in a tropical evergreen broad-leaved forest of north-central Vietnam. Journal of Veg-etation Science, 27(2):318-327. doi: 10.1111/jvs.12361
    [44] Niklaus P A, Baruffol M, He J S et al., 2017. Can niche plasticity promote biodiversity-productivity relationships through in-creased complementarity? Ecology, 98(4):1104-1116. doi: 10.1002/ecy.1748
    [45] Olennikov D N, Tankhaeva L M, 2010. Phenolic compounds from Rhododendron dauricum from the Baikal region. Chemistry of Natural Compounds, 46(3):471-473. doi: 10.1007/s10600-010-9649-7
    [46] Padilla F M, Pugnaire F I, 2006. The role of nurse plants in the restoration of degraded environments. Frontiers in Ecology and the Environment, 4(4):196-202. doi:10.1890/1540-9295 (2006)004[0196:TRONPI]2.0.CO;2
    [47] Pianka E R, 1973. The structure of lizard communities. Annual Review of Ecology and Systematics, 4:53-74. doi: 10.1146/annurev.es.04.110173.000413
    [48] Piedallu C, Gégout J C, Lebourgeois F et al., 2016. Soil aeration, water deficit, nitrogen availability, acidity and temperature all contribute to shaping tree species distribution in temperate forests. Journal of Vegetation Science, 27(2):387-399. doi: 10.1111/jvs.12370
    [49] Pielou E C, 1974. Population and Community Ecology:Principles and Methods. Boca Raton:CRC Press.
    [50] Pinheiro T, Ferrari S F, Lopes M A, 2011. Polyspecific associa-tions between squirrel monkeys (Saimiri sciureus) and other primates in eastern Amazonia. American Journal of Primatol-ogy, 73(11):1145-1151. doi: 10.1002/ajp.20981
    [51] Ratcliffe N, Crofts S, Brown R et al., 2014. Love thy neighbour or opposites attract? Patterns of spatial segregation and association among crested penguin populations during winter. Journal of Biogeography, 41(6):1183-1192. doi: 10.1111/jbi.12279
    [52] Saeki H, Hara R, Takahashi H et al., 2018. An aromatic farnesyl-transferase functions in biosynthesis of the Anti-HIV mero-terpenoid daurichromenic acid. Plant Physiology, 178(2):535-551. doi: 10.1104/pp.18.00655
    [53] Schellenberger Costa D, Gerschlauer F, Kiese R et al., 2018. Plant niche breadths along environmental gradients and their rela-tionship to plant functional traits. Diversity and Distributions, 24(12):1869-1882. doi: 10.1111/ddi.12815
    [54] Schluter D, 1984. A variance test for detecting species associations, with some example applications. Ecology, 65(3):998-1005. doi: 10.2307/1938071
    [55] Schmid B, 1984. Niche width and variation within and between populations in colonizing species (Carex flava group). Oeco-logia, 63(1):1-5. doi: 10.1007/BF00379777
    [56] Sfenthourakis S, Tzanatos E, Giokas S, 2006. Species co-occurrence:the case of congeneric species and a causal ap-proach to patterns of species association. Global Ecology and Biogeography, 15(1):39-49. doi:10.1111/j.1466-822X.2005. 00192.x
    [57] Silvertown J, 2004. Plant coexistence and the niche. Trends in Ecology & Evolution, 19(11):605-611. doi:10.1016/j.tree. 2004.09.003
    [58] Silvertown J, Dodd M, Gowing D et al. 2006a. Phylogeny and the hierarchical organization of plant diversity. Ecology, 87(sp7):S39-S49. doi:10.1890/0012-9658(2006)87[39:PATHOO]2.0. CO;2
    [59] Silvertown J, McConway K, Gowing D et al. 2006b. Absence of phylogenetic signal in the niche structure of meadow plant communities. Proceedings of the Royal Society B:Biological Sciences, 273(1582):39-44. doi: 10.1098/rspb.2005.3288
    [60] Slatyer R A, Hirst M, Sexton J P, 2013. Niche breadth predicts geographical range size:a general ecological pattern. Ecology Letters, 16(8):1104-1114. doi: 10.1111/ele.12140
    [61] Song Chuangye, Huang Chong, Liu Huiming, 2013. Predictive vegetation mapping approach based on spectral data, DEM and generalized additive models. Chinese Geographical Science, 23(3):331-343. doi: 10.1007/s11769-013-0590-0
    [62] Su S J, Liu J F, He Z S et al., 2015. Ecological species groups and interspecific association of dominant tree species in Daiyun Mountain National Nature Reserve. Journal of Mountain Sci-ence, 12(3):637-646. doi: 10.1007/s11629-013-2935-7
    [63] Tanentzap A J, Brandt A J, Smissen R D et al., 2015. When do plant radiations influence community assembly? The importance of historical contingency in the race for niche space. New Phytologist, 207(2):468-479. doi: 10.1111/nph.13362
    [64] Tatsumi S, Cadotte M W, Mori A S, 2018. Individual-based models of community assembly:neighbourhood competition drives phylogenetic community structure. Journal of Ecology, 107(2):735-746. doi: 10.1111/1365-2745.13074
    [65] Tanentzap A J, Brandt A J, Smissen R D et al., 2015. When do plant radiations influence community assembly? The importance of historical contingency in the race for niche space. New Phytologist, 207(2):468-479. doi: 10.1111/nph.13362
    [66] Thompson K, Gaston K J, Band S R, 1999. Range size, dispersal and niche breadth in the herbaceous flora of central England. Journal of Ecology, 87(1):150-155. doi: 10.1046/j.1365-2745.1999.00334.x
    [67] Treier U A, Broennimann O, Normand S et al., 2009. Shift in cytotype frequency and niche space in the invasive plant Cen-taurea maculosa. Ecology, 90(5):1366-1377. doi: 10.1890/08-0420.1
    [68] Wang X G, Wiegand T, Hao Z Q et al., 2010. Species associations in an old-growth temperate forest in north-eastern China. Journal of Ecology, 98(3):674-686. doi:10.1111/j.1365-2745. 2010.01644.x
    [69] Webb C O, Ackerly D D, McPeek M A et al., 2002. Phylogenies and community ecology. Annual Review of Ecology and Sys-tematics, 33:475-505. doi:10.1146/annurev.ecolsys.33. 010802.150448
    [70] Wei Wei, Chen Liding, Yang Lei et al., 2012. Spatial scale effects of water erosion dynamics:complexities, variabilities, and uncertainties. Chinese Geographical Science, 22(2):127-143. doi: 10.1007/s11769-012-0524-2
    [71] Wilson J B, Lee W G, 1994. Niche overlap of congeners:a test using plant altitudinal distribution. Oikos, 69(3):469-475. doi: 10.2307/3545859
    [72] Wright A, Schnitzer S A, Reich P B et al., 2015. Daily environ-mental conditions determine the competition-facilitation balance for plant water status. Journal of Ecology, 103(3):648-656. doi: 10.1111/1365-2745.12397
    [73] Xu Wenduo, He Xingyuan, Chen Wei et al., 2008. Ecological division of vegetations in Northeast China. Chinese Journal of Ecology, 27(11):1853-1860. (in Chinese)
    [74] Yang Q W, Liu S J, Hu C H et al., 2016. Ecological species groups and interspecific association of vegetation in natural recovery process at Xiejiadian landslide after 2008 Wenchuan earthquak. Journal of Mountain Science, 13(9):1609-1620. doi: 10.1007/s11629-016-3807-8
    [75] Zhang X W, Liu X H, Zhang Q L et al., 2018. Species-specific tree growth and intrinsic water-use efficiency of Dahurian larch (Larix gmelinii) and Mongolian pine (Pinus sylvestris var. mongolica) growing in a boreal permafrost region of the Greater Hinggan Mountains, northeastern China. Agricultural and Forest Meteorology, 248:145-155. doi: 10.1016/j.agrformet.2017.09.013
    [76] Zhang X Z, Wang W C, Fang X Q et al., 2011. Vegetation of Northeast China during the late seventeenth to early twentieth century as revealed by historical documents. Regional Envi-ronmental Change, 11(4):869-882. doi: 10.1007/s10113-011-0224-y
    [77] Zhu Yuan, Kang Muyi, 2005. Application of ordination and GLM/GAM in the research of the relationship between plant species and environment. Chinese Journal of Ecology, 24(7):807-811. (in Chinese)
  • [1] Manyu BI, Yexi ZHONG, Zeping XIAO, Xinghua FENG, Hongzhi MA.  Spatial and Temporal Change of Habitat Quality of Poyang Lake Basin in China at Small Watershed Scale and Its Multidimensional Response to Landscape Pattern . Chinese Geographical Science, 2023, 33(3): 565-582. doi: 10.1007/s11769-023-1357-x
    [2] Chunliang XIU, Ying JIN.  Issues with Spatial Scale in Urban Research . Chinese Geographical Science, 2022, 32(3): 373-388. doi: 10.1007/s11769-022-1274-4
    [3] Jiawei WANG, Shilin YE, Xinhua QI.  Regional Equity and Influencing Factor of Social Assistance in China . Chinese Geographical Science, 2021, 31(4): 611-628. doi: 10.1007/s11769-021-1195-7
    [4] WANG Shaobo, GUO Jianke, LUO Xiaolong, LIU Junfeng, GU Zongni.  Spatial Impact of High-speed Railway on the Urban Scale: An Empirical Analysis from Northeast China . Chinese Geographical Science, 2020, 30(2): 366-378. doi: 10.1007/s11769-020-1115-2
    [5] FENG Xinghua, LEI Jing, XIU Chunliang, LI Jianxin, BAI Limin, ZHONG Yexi.  Analysis of Spatial Scale Effect on Urban Resilience: A Case Study of Shenyang, China . Chinese Geographical Science, 2020, 30(6): 1005-1021. doi: 10.1007/s11769-020-1163-7
    [6] WU Zongfan, ZHANG Lihua, LIU Dandan, ZHANG Kang, ZHU Zhiru, FU Yasheng, MA Yongming.  Simulation of Evapotranspiration Based on BEPS-TerrainLab V2.0 from 1990 to 2018 in the Dajiuhu Basin . Chinese Geographical Science, 2020, 30(6): 1095-1110. doi: 10.1007/s11769-020-1160-x
    [7] LI Zhen, LI Yong, XING An, ZHUO Zhiqing, ZHANG Shiwen, ZHANG Yuanpei, HUANG Yuanfang.  Spatial Prediction of Soil Salinity in a Semiarid Oasis: Environmental Sensitive Variable Selection and Model Comparison . Chinese Geographical Science, 2019, 20(5): 784-797. doi: 10.1007/s11769-019-1071-x
    [8] XUE Shuyan, LI Gang, YANG Lan, LIU Ling, NIE Qifan, Muhammad Sajid MEHMOOD.  Spatial Pattern and Influencing Factor Analysis of Attended Collection and Delivery Points in Changsha City, China . Chinese Geographical Science, 2019, 29(6): 1078-1094. doi: 10.1007/s11769-019-1086-3
    [9] MA Zhenbang, CHEN Xingpeng, CHEN Huan.  Multi-scale Spatial Patterns and Influencing Factors of Rural Poverty: A Case Study in the Liupan Mountain Region, Gansu Province, China . Chinese Geographical Science, 2018, 28(2): 296-312. doi: 10.1007/s11769-018-0943-9
    [10] FANG Zhongquan, ZHANG Ying, WANG Zhangjun, ZHANG Lifeng.  Spatial Agglomeration of Exhibition Enterprises on a Regional Scale in China . Chinese Geographical Science, 2017, 27(3): 497-506. doi: 10.1007/s11769-017-0879-5
    [11] LIU Yaolin, XIE Peng, HE Qingsong, ZHAO Xiang, WEI Xiaojian, TAN Ronghui.  A New Method Based on Association Rules Mining and Geo-filter for Mining Spatial Association Knowledge . Chinese Geographical Science, 2017, 27(3): 389-401. doi: 10.1007/s11769-017-0873-y
    [12] LAN Yan, CUI Baoshan, HAN Zhen, LI Xia, LI Fengju, ZHANG Yongtao.  Spatial Distribution and Environmental Determinants of Denitrification Enzyme Activity in Reed-Dominated Raised Fields . Chinese Geographical Science, 2015, 25(4): 438-450. doi: 10.1007/s11769-014-0721-2
    [13] SHA Di, GAO Meixiang, SUN Xin, WU Donghui, ZHANG Xueping.  Relative Contributions of Spatial and Environmental Processes and Biotic Interactions in a Soil Collembolan Community . Chinese Geographical Science, 2015, 25(5): 582-590. doi: 10.1007/s11769-015-0778-6
    [14] YANG Lin, HUANG Chong, LIU Gaohuan, LIU Jing, ZHU A-Xing.  Mapping Soil Salinity Using a Similarity-based Prediction Approach:A Case Study in Huanghe River Delta, China . Chinese Geographical Science, 2015, 25(3): 283-294. doi: 10.1007/s11769-015-0740-7
    [15] WEI Wei, CHEN Liding, YANG Lei, FU Bojie, SUN Ranhao.  Spatial Scale Effects of Water Erosion Dynamics: Complexities, Variabilities, and Uncertainties . Chinese Geographical Science, 2012, 22(2): 127-143.
    [16] ZHANG Jiping, ZHANG Yili, LIU Linshan, NIE Yong.  Predicting Potential Distribution of Tibetan Spruce (Picea smithiana) in Qomolangma (Mount Everest) National Nature Preserve Using Maximum Entropy Niche-based Model . Chinese Geographical Science, 2011, 21(4): 417-426.
    [17] YAN Haowen.  Fundamental Theories of Spatial Similarity Relations in Multi-scale Map Spaces . Chinese Geographical Science, 2010, 20(1): 18-22. doi: 10.1007/s11769-010-0018-z
    [18] TANG Yanling, ZHANG Guangxin, YANG Yuesuo, GAO Yingzhi.  Identifying Key Environmental Factors Influencing Spatial Variation of Water Quality in Upper Shitoukoumen Reservoir Basin in Jilin Province, China . Chinese Geographical Science, 2009, 19(4): 365-374. doi: 10.1007/s11769-009-0365-9
    [19] GAO Xiaona, MA Yanji.  Spatial Pattern and Influencing Factor of County-level Industrial Development in Liaoning Province of China . Chinese Geographical Science, 2008, 18(1): 24-32. doi: 10.1007/s11769-008-0024-6
    [20] WANG Wei-wu, ZHU Li-zhong, WANG Ren-chao, SHI Yong-jun.  ANALYSIS ON THE SPATIAL DISTRIBUTION VARIATION CHARACTERISTIC OF URBAN HEAT ENVIRONMENTAL QUALITY AND ITS MECHANISM—A Case Study of Hangzhou City . Chinese Geographical Science, 2003, 13(1): 39-47.
  • 加载中
计量
  • 文章访问数:  201
  • HTML全文浏览量:  24
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-24

Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China

doi: 10.1007/s11769-020-1138-8
    基金项目:

    Under the auspices of National Key Research and Development Program of China (No. 2016YFC0500306)

    通讯作者: CHEN Wei. E-mail:chenwei@iae.ac.cn; HE Xingyuan. E-mail:Hexy@iae.ac.cn

摘要: This study aims to verify the concept of niches at multiple spatial scales in plant communities. To this end, we analyzed the niche characteristic of Rhododendron dauricum plant communities in Northeast China at three spatial scales. At the local scale, we calculated the Importance Value (IV) of species in five communities in the north of the Da Hinggan Mountains. At the intermediate scale, we examined five communities in their entirety, calculated the niche breadth of the species, and integrated niche overlap and interspecific association to analyze interspecific relationships. Further, the generalized additive model (GAM) was used to analyze the impact of topography and soil factors on niche characteristics. At the regional scale, we analyzed the geographical distribution of dominant species of R. dauricum plant communities in Northeast China and used principal component analysis (PCA) to analyze the impact of geographical and climate factors on species distribution. The results show that at the local scale, the IV of the species in each community varies widely. At the intermediate scale, species with a wide niche breadth tend to have a high value for IV. Larix gmelinii, Betula platyphylla, R. dauricum, Ledum palustre, and Vaccinium vitis-idaea had a relatively wide niche breadth and a high niche overlap, and the interspecific associations were almost all positive. Elevation and soil nutrients were the most dominant environmental factors. At the regional scale, species with a wide niche breadth tend to have a wide range of distribution, and temperature and precipitation were the most dominant environmental factors. This study suggests that the niche characteristics at three scales are both related and different. Niche characteristics at the local scale were various and labile, and niche characteristics at the intermediate and regional scales were relatively regular. These results show some degree of consistency with previous studies from an evolutionary perspective. The action mechanisms of these communities are related to differences in the dominant environmental factors. In addition, the integration of niche overlap and interspecific association determine interspecific relationships more accurately.

English Abstract

LU Yupeng, CHEN Wei, YAO Jing, HUANG Yanqing, ZHANG Yue, LIU Huanchu, HE Xingyuan. Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China[J]. 中国地理科学, 2020, 30(4): 614-630. doi: 10.1007/s11769-020-1138-8
引用本文: LU Yupeng, CHEN Wei, YAO Jing, HUANG Yanqing, ZHANG Yue, LIU Huanchu, HE Xingyuan. Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China[J]. 中国地理科学, 2020, 30(4): 614-630. doi: 10.1007/s11769-020-1138-8
LU Yupeng, CHEN Wei, YAO Jing, HUANG Yanqing, ZHANG Yue, LIU Huanchu, HE Xingyuan. Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China[J]. Chinese Geographical Science, 2020, 30(4): 614-630. doi: 10.1007/s11769-020-1138-8
Citation: LU Yupeng, CHEN Wei, YAO Jing, HUANG Yanqing, ZHANG Yue, LIU Huanchu, HE Xingyuan. Multiple Spatial Scale Analysis of the Niche Characteristics of the Rhododendron dauricum Plant Communities in Northeast China[J]. Chinese Geographical Science, 2020, 30(4): 614-630. doi: 10.1007/s11769-020-1138-8
参考文献 (77)

目录

    /

    返回文章
    返回