留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China

YU Shan JIANG Li DU Wala ZHAO Jianjun ZHANG Hongyan ZHANG Qiaofeng LIU Huijuan

YU Shan, JIANG Li, DU Wala, ZHAO Jianjun, ZHANG Hongyan, ZHANG Qiaofeng, LIU Huijuan. Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China[J]. 中国地理科学, 2020, 30(4): 572-587. doi: 10.1007/s11769-020-1134-z
引用本文: YU Shan, JIANG Li, DU Wala, ZHAO Jianjun, ZHANG Hongyan, ZHANG Qiaofeng, LIU Huijuan. Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China[J]. 中国地理科学, 2020, 30(4): 572-587. doi: 10.1007/s11769-020-1134-z
YU Shan, JIANG Li, DU Wala, ZHAO Jianjun, ZHANG Hongyan, ZHANG Qiaofeng, LIU Huijuan. Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China[J]. Chinese Geographical Science, 2020, 30(4): 572-587. doi: 10.1007/s11769-020-1134-z
Citation: YU Shan, JIANG Li, DU Wala, ZHAO Jianjun, ZHANG Hongyan, ZHANG Qiaofeng, LIU Huijuan. Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China[J]. Chinese Geographical Science, 2020, 30(4): 572-587. doi: 10.1007/s11769-020-1134-z

Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China

doi: 10.1007/s11769-020-1134-z
基金项目: 

Under the auspices of National Natural Science Foundation of China (No. 41761101, 41771450, 41871330), National Natural Science Foundation of Inner Mongolia (No. 2017MS0409), Fundamental Research Funds for the Central Universities (No. 2412019BJ001)

详细信息
    通讯作者:

    ZHANG Hongyan. E-mail:zhy@nenu.edu.cn

Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China

Funds: 

Under the auspices of National Natural Science Foundation of China (No. 41761101, 41771450, 41871330), National Natural Science Foundation of Inner Mongolia (No. 2017MS0409), Fundamental Research Funds for the Central Universities (No. 2412019BJ001)

  • 摘要: Grassland fires results in carbon emissions, which directly affects the carbon cycle of ecosystems and the carbon balance. The grassland area of Inner Mongolia accounts for 22% of the total grassland area in China, and many fires occur in the area every year. However, there are few models for estimation of carbon emissions from grassland fires. Accurate estimation of direct carbon emissions from grassland fires is critical to quantifying the contribution of grassland fires to the regional balance of atmospheric carbon. In this study, the regression equations for aboveground biomass (AGB) of grassland in growing season and MODIS NDVI (Normalized Difference Vegetation Index) were established through field experiments, then AGB during Nov.-Apr. were retrieved based on that in Oct. and decline rate, finally surface fuel load was obtained for whole year. Based on controlled combustion experiments of different grassland types in Inner Mongolia, the carbon emission rate of grassland fires for each grassland type were determined, then carbon emission was estimated using proposed method and carbon emission rate. Results revealed that annual average surface fuel load of grasslands in Inner Mongolia during 2000-2016 was approximately 1.1978×1012 kg. The total area of grassland which was burned in the Inner Mongolia region over the 17-year period was 5298.75 km2, with the annual average area of 311.69 km2. The spatial distribution of grassland surface fuel loads is characterized by decreasing from northeast to southwest in Inner Mongolia. The total carbon emissions from grassland fires amounted to 2.24×107 kg with an annual average of 1.32×106 for the study area. The areas with most carbon emissions were mainly concentrated in Old Barag Banner and New Barag Right Banner and on the right side of the Oroqin Autonomous Banner. The spatial characteristics of carbon emission depend on the location of grassland fire, mainly in the northeast of Inner Mongolia include Hulunbuir City, Hinggan League, Xilin Gol League and Ulanqab City. The area and spatial location of grassland fires can directly affect the total amount and spatial distribution of carbon emissions. This study provides a reference for estimating carbon emissions from steppe fires. The model and framework for estimation of carbon emissions from grassland fires established can provide a reference value for estimation of carbon emissions from grassland fires in other regions.
  • [1] Baes C F Jr, Goeller H E, Olson J S et al., 1976. The Global Carbon Dioxide Problem. Oak Ridge National Laboratory, ORNL-5194, Oak Ridge, Tennessee.
    [2] Boschetti L, Roy D P, Justice C O et al., 2010. Global assessment of the temporal reporting accuracy and precision of the MODIS burned area product. International Journal of Wildland Fire, 19(6):705-709. doi: 10.1071/WF09138
    [3] Chander G, Markham B L, Helder D L, 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environ-ment, 113(5):893-903. doi: 10.1016/j.rse.2009.01.007
    [4] Choi S D, Chang Y S, Park B K, 2006. Increase in carbon emis-sions from forest fires after intensive reforestation and forest management programs. Science of the Total Environment, 372(1):225-235. doi: 10.1016/j.scitotenv.2006.09.024
    [5] Conard S G, Solomon A M, 2008. Chapter 5 Effects of wildland fire on regional and global carbon stocks in a changing envi-ronment. Developments in Environmental Science, 8:109-138. doi: 10.1016/S1474-8177(08)00005-3
    [6] Crowley T J, 2000. Causes of climate change over the past 1000 years. Science, 289(5477):270-277. doi:10.1126/science.289. 5477.270
    [7] de Groot W J, 2006. Modeling Canadian wildland fire carbon emissions with the Boreal Fire Effects (BORFIRE) model. Forest Ecology and Management, 234:S224. doi: 10.1016/j.foreco.2006.08.251
    [8] de Groot W J, Landry R, Kurz W A et al., 2007. Estimating direct carbon emissions from Canadian wildland fires. International Journal of Wildland Fire, 16(5):593-606. doi: 10.1071/WF06150
    [9] Doolin D M, Sitar N, 2005. Wireless sensors for wildfire moni-toring. In Smart Structures and Materials 2005:Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems. International Society for Optics and Pho-tonics, 5765:477-484. doi: 10.1117/12.605655
    [10] Fan J W, Wang K, Harris W et al., 2009. Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. Journal of Arid Environments, 73(4-5):521-528. doi: 10.1016/j.jaridenv.2008.12.004
    [11] Feng Q, Cheng G D, Mikami M, 2001. The carbon cycle of sandy lands in China and its global significance. Climatic Change, 48(4):535-549. doi: 10.1023/A:1005664307625
    [12] Flannigan M D, van Wagner C E, 1991. Climate change and wildfire in Canada. Canadian Journal of Forest Research, 21(1):66-72. doi: 10.1139/x91-010
    [13] French N H F, de Groot W J, Jenkins L K et al., 2011. Model comparisons for estimating carbon emissions from North American wildland fire. Journal of Geophysical Research:Biogeosciences, 116(G4):G00K05. doi:10.1029/2010JG 001469
    [14] Hall F G, Townshend J R, Engman E T, 1995. Status of remote sensing algorithms for estimation of land surface state param-eters. Remote Sensing of Environment, 51(1):138-156. doi: 10.1016/0034-4257(94)00071-T
    [15] Hoelzemann J J, Schultz M G, Brasseur G P et al., 2004. Global Wildland Fire Emission Model (GWEM):evaluating the use of global area burnt satellite data. Journal of Geophysical Re-search:Atmospheres, 109(D14):D14S04. doi: 10.1029/2003JD003666
    [16] Hu Haiqing, Wang Guangyu, Sun Long, 2009. Analyses of gas emission in ground covers combustion of main forest fuel types in Xiaoxing'an Mountain. Scientia Silvae Sinicae, 45(5):109-114. (in Chinese)
    [17] Hu Haiqing, Wei Shujing, Jin Sen et al., 2012. Measurement model of carbon emission from forest fire:a review. Chinese Journal of Applied Ecology, 23(5):1423-1434. (in Chinese)
    [18] Hu Haiqing, Wei Shujing, Sun Long et al., 2013. Interaction among climate change, fire disturbance and ecosystem carbon cycle. Arid Land Geography, 36(1):57-75. (in Chinese)
    [19] Kanury A M, 1972. Thermal decomposition kinetics of wood pyrolysis. Combustion & Flame, 18(1):75-83. doi: 10.1016/S0010-2180(72)80228-1
    [20] Kasischke E S, French N H F, Bourgeau-Chavez L L et al., 1995. Estimating release of carbon from 1990 and 1991 forest fires in Alaska. Journal of Geophysical Research, 100(D2):2941-2951. doi: 10.1029/94JD02957
    [21] Lasslop G, Kloster S, 2015. Impact of fuel variability on wildfire emission estimates. Atmospheric Environment, 121:93-102. doi: 10.1016/j.atmosenv.2015.05.040
    [22] Lehsten V, Tansey K, Balzter H et al., 2009. Estimating carbon emissions from African wildfires. Biogeosciences, 6(3):349-360. doi: 10.5194/bg-6-349-2009
    [23] Li Linghao, Liu Xianhua, Chen Zuozhong, 1998. Study on the carbon cycle of Leymus chinensis steppe in the Xilin River Basin. Acta Botanica Sinica, 40(10):955-961. (in Chinese)
    [24] Li Y P, Zhao J J, Guo X Y et al., 2017. The influence of land use on the grassland fire occurrence in the Northeastern Inner Mongolia autonomous region, China. Sensors, 17(3):437. doi: 10.3390/s17030437
    [25] Liu Bin, Tian Xiaorui, 2011. Carbon emission from Huzhong forest fire in Daxing'anling. Forest Resources Management, (3):47-51. (in Chinese)
    [26] Liu M F, Zhao J J, Guo X Y et al., 2017. Study on climate and grassland fire in HulunBuir, Inner Mongolia autonomous re-gion, China. Sensors, 17(3):616. doi: 10.3390/s17030616
    [27] Liu X P, Zhang J Q, Tong Z J, 2010. The dynamic danger as-sessment for grassland fire disaster in Xilingol, Inner Mongolia. Computational Intelligence:Foundations and Applications, 1110-1116. doi: 10.1142/9789814324700_0171
    [28] Liu X P, Zhang J Q, Tong Z J, 2015. Modeling the early warning of grassland fire risk based on fuzzy logic in Xilingol, Inner Mongolia. Natural Hazards, 75(3):2331-2342. doi: 10.1007/s11069-014-1428-5
    [29] Moreau S, Bosseno R, Gu X F et al., 2003. Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR. Remote Sensing of Environment, 85(4):516-529. doi:10.1016/S0034-4257(03) 00053-1
    [30] Ni J, 2002. Carbon storage in grasslands of China. Journal of Arid Environments, 50(2):205-218. doi:10.1006/jare. 2201.0902
    [31] Peters A, Verhoeven K J F, 1994. Impact of artificial lighting on the seaward orientation of hatchling loggerhead turtles. Journal of Herpetology, 28(1):112-114. doi: 10.2307/1564691
    [32] Possell M, Nicholas Hewitt C, Beerling D J, 2005. The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. Global Change Biology, 11:60-69. doi: 10.1111/j.1365-2486.2004.00889.x
    [33] Prasad V K, Gupta P K, Sharma C et al., 2002. CO and CO2 emissions from biomass burning of tropical dry deciduous and mixed deciduous forests in shifting cultivation areas of India. Pollution Research, 21(2):143-155. doi: 10.1016/S0140-6701(03)82155-0
    [34] Reister D B, 1984. The use of a simple model in conjunction with a detailed carbon dioxide emissions model. Energy, 9(8):637-643. doi: 10.1016/0360-5442(84)90092-6
    [35] Rodhe H, 1990. A comparison of the contribution of various gases to the greenhouse effect. Science, 248(4960):1217-1219. doi: 10.1126/science.248.4960.1217
    [36] Running S W, 2006. CLIMATE CHANGE:is global warming causing more, larger wildfires?. Science, 313(5789):927-928. doi: 10.1126/science.1130370
    [37] Schultz M G, Heil A, Hoelzemann J J et al., 2008. Global wildland fire emissions from 1960 to 2000. Global Biogeochemical Cycles, 22(2):GB2002. doi: 10.1029/2007GB003031
    [38] Shi Y S, Sasai T, Yamaguchi Y, 2014. Spatio-temporal evaluation of carbon emissions from biomass burning in Southeast Asia during the period 2001-2010. Ecological Modelling, 272:98-115. doi: 10.1016/j.ecolmodel.2013.09.021
    [39] Soja A J, Cofer W R, Shugart H H et al., 2004. Estimating fire emissions and disparities in boreal Siberia (1998-2002). Jour-nal of Geophysical Research, 109(D14):D14S06. doi: 10.1029/2004JD004570
    [40] Tett S F B, Stott P A, Allen M R et al., 1999. Causes of twenti-eth-century temperature change near the Earth's surface. Nature, 399(6736):569-572. doi: 10.1038/21164
    [41] Tian Xiaorui, Shu Lifu, Wang Mingyu, 2003. Direct carbon emissions from Chinese forest fires, 1991~2000. Fire Safety Science, 12(1):6-10. (in Chinese)
    [42] Van der Werf G R, Randerson J T, Giglio L et al., 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10:11707-11735. doi: 10.5194/acp-10-11707-2010
    [43] Villars P, Cenzual K, 2011. Space Groups (140) I4/mcm-(136) P42/mnm. Berlin:Springer.Wang Xinyun, Guo Yige, He Jie, 2014. Estimation of above-ground biomass of grassland based on multi-source remote sensing data. Transactions of the Chi-nese Society of Agricultural Engineering, 30(11):159-166. (in Chinese)
    [44] Wen Kegang, Shen Jianguo, 2008. Chinese Meteorological Dis-asters Ceremony (Inner Mongolia Volume). Beijing:China Meteorological Press. (in Chinese)
    [45] Yang H Y, Zhao C, Liu Y W, 2008. GIS-based Inner Mongolia grassland fire spread simulation system. In:2008 International Conference on Computer Science and Software Engineering. Hubei, China:IEEE, 923-925. doi: 10.1109/CSSE.2008.764
    [46] Yin Li, Tian Xiaorui, Kang Lei et al., 2009. Research development of carbon emissions from forest fires. World Forestry Research, 22(3):46-51. (in Chinese)
    [47] Zhang Z X, Feng Z Q, Zhang H Y et al., 2017. Spatial distribution of grassland fires at the regional scale based on the MODIS active fire products. International Journal of Wildland Fire, 26(3):209-218. doi: 10.1071/WF16026
    [48] Zhao C, Meng K Q L, Yang H Y, 2010. The design and realization of Inner Mongolia grassland fire spread simulation system based on GIS and CA. In:2009 1st International Conference on Information Science and Engineering. Nanjing, China:IEEE, 2205-2208. doi: 10.1109/ICISE.2009.1197
    [49] Zhao Mengli, Xu Zhixin, 2000. Rational use of grassland re-sources and sustainable development of animal husbandry in Inner Mongolia. Resources Science, 22(1):73-76. (in Chi-nese)
    [50] Zheng Wei, Shao Jiali, Wang Meng et al., 2013. Dynamic moni-toring and analysis of grassland fire based on multi-source sat-ellite remote sensing data. Journal of Natural Disasters, 22(3):54-61. (in Chinese)
  • [1] Bo HU, Qingke WEN, Fengjiang XI, Mengyao LI, Libing WANG, Yuejuan REN.  Effects of Enclosure on Grassland Ecological and Economic Benefits in Northern China . Chinese Geographical Science, 2024, 34(1): 67-78. doi: 10.1007/s11769-023-1404-7
    [2] Ruiling HAN, Lingling LI, Xiaoyan ZHANG, Zi LU, Shaohua ZHU.  Spatial-temporal Evolution Characteristics and Decoupling Analysis of Influencing Factors of China’s Aviation Carbon Emissions . Chinese Geographical Science, 2022, 32(2): 218-236. doi: 10.1007/s11769-021-1247-z
    [3] HE Qingsong, TAN Shukui, XIE Peng, LIU Yaolin, LI Jing.  Re-assessing Vegetation Carbon Storage and Emissions from Land Use Change in China Using Surface Area . Chinese Geographical Science, 2019, 20(4): 601-613. doi: 10.1007/s11769-019-1058-7
    [4] PAN Yun, GONG Huili, SUN Ying, WANG Xinjuan, DING Fei.  Distributed Estimation and Analysis of Precipitation Recharge Coefficient in Strongly-exploited Beijing Plain Area, China . Chinese Geographical Science, 2017, 27(1): 88-96. doi: 10.1007/s11769-016-0839-5
    [5] LI Jing, LO Kevin, ZHANG Pingyu, GUO Meng.  Relationship Between Built Environment, Socio-economic Factors and Carbon Emissions from Shopping Trip in Shenyang City, China . Chinese Geographical Science, 2017, 27(5): 722-734. doi: 10.1007/s11769-017-0904-8
    [6] YIN Guanwen, LIU Yungang.  Administrative Urbanization and City-making in Post-reform China:A Case Study of Ordos City, Inner Mongolia . Chinese Geographical Science, 2017, 27(6): 891-903. doi: 10.1007/s11769-017-0919-1
    [7] JIANG Ling, XIAO Yi, ZHENG Hua, OUYANG Zhiyun.  Spatio-temporal Variation of Wind Erosion in Inner Mongolia of China Between 2001 and 2010 . Chinese Geographical Science, 2016, 26(2): 155-164. doi: 10.1007/s11769-016-0797-y
    [8] TANG Long, DANG Xiaohu, LIU Guobin, SHAO Chuanke, XUE Sha.  Response of Artificial Grassland Carbon Stock to Management in Mountain Region of Southern Ningxia, China . Chinese Geographical Science, 2014, 0(4): 436-443. doi: 10.1007/s11769-014-0705-2
    [9] HU Chanjuan, LIU Guohua, FU Bojie, CHEN Liding, LYU Yihe, GUO Lei.  Soil Carbon Stock and Flux in Plantation Forest and Grassland Ecosystems in Loess Plateau, China . Chinese Geographical Science, 2014, 0(4): 423-435. doi: 10.1007/s11769-014-0700-7
    [10] LIU Miao, LIU Guohua, WU Xing, WANG Hao, CHEN Li.  Vegetation Traits and Soil Properties in Response to Utilization Patterns of Grassland in Hulun Buir City, Inner Mongolia, China . Chinese Geographical Science, 2014, 0(4): 471-478. doi: 10.1007/s11769-014-0706-1
    [11] WU Xing, LI Zongshan, FU Bojie, LU Fei, WANG Dongbo, LIU Huifeng, LIU Guohua.  Effects of Grazing Exclusion on Soil Carbon and Nitrogen Storage in Semi-arid Grassland in Inner Mongolia, China . Chinese Geographical Science, 2014, 0(4): 479-487. doi: 10.1007/s11769-014-0694-1
    [12] DU Jia, SONG Kaishan, WANG Zongming, ZHANG Bai, LIU Dianwei.  Evapotranspiration Estimation Based on MODIS Products and Surface Energy Balance Algorithms for Land (SEBAL) Model in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2013, 23(1): 73-91.
    [13] GUO Zhixing, FANG Weihua, TAN Jun, SHI Xianwu.  A Time-dependent Stochastic Grassland Fire Ignition Probability Model for Hulun Buir Grassland of China . Chinese Geographical Science, 2013, 23(4): 445-459. doi: 10.1007/s11769-013-0614-9
    [14] LIU Xiaoqian, WANG Yanglin, PENG Jian, Ademola K BRAIMOH, YIN He.  Assessing Vulnerability to Drought Based on Exposure, Sensitivity and Adaptive Capacity: A Case Study in Middle Inner Mongolia of China . Chinese Geographical Science, 2013, 23(1): 13-25.
    [15] YANG Wei, ZHANG Shuwen, TANG Junmei, BU Kun, YANG Jiuchun, CHANG Liping.  A MODIS Time Series Data Based Algorithm for Mapping Forest Fire Burned Area . Chinese Geographical Science, 2013, 23(3): 344-352. doi: 10.1007/s11769-013-0597-6
    [16] LIU Zigang1, WANG Ming2, 3, MA Xuehui2.  Estimation of Storage and Density of Organic Carbon in Peatlands of China . Chinese Geographical Science, 2012, 22(6): 637-646.
    [17] JIANG Weiguo, ZHU Xiaohua, WU Jianjun, et al.  Retrieval and Analysis of Coal Fire Temperature in Wuda Coalfield, Inner Mongolia, China . Chinese Geographical Science, 2011, 21(2): 159-166.
    [18] FU Yao, LIN Changcun, MA Jianjun, ZHU Tingcheng.  Effects of Plant Types on Physico-chemical Properties of Reclaimed Mining Soil in Inner Mongolia, China . Chinese Geographical Science, 2010, 20(4): 309-317. doi: 10.1007/s11769-010-0403-7
    [19] RAN Sheng-hong, JIN Jian-jun.  EVOLVEMENT AND CONTROL OF VULNERABLE ECOLOGICAL REGION—A Case Study in Ongniud Banner and Aohan Banner,Inner Mongolia . Chinese Geographical Science, 2004, 14(2): 135-141.
    [20] 王瑜, 宋长青, 孙湘君.  PALYNOLOGICAL RECORD OF PALEOVEGETATION CHANGE DURING HOLOCENE AT NORTH TUMD PLAIN IN INNER MONGOLIA, CHINA . Chinese Geographical Science, 1999, 9(1): 87-91.
  • 加载中
计量
  • 文章访问数:  378
  • HTML全文浏览量:  84
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-16

Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China

doi: 10.1007/s11769-020-1134-z
    基金项目:

    Under the auspices of National Natural Science Foundation of China (No. 41761101, 41771450, 41871330), National Natural Science Foundation of Inner Mongolia (No. 2017MS0409), Fundamental Research Funds for the Central Universities (No. 2412019BJ001)

    通讯作者: ZHANG Hongyan. E-mail:zhy@nenu.edu.cn

摘要: Grassland fires results in carbon emissions, which directly affects the carbon cycle of ecosystems and the carbon balance. The grassland area of Inner Mongolia accounts for 22% of the total grassland area in China, and many fires occur in the area every year. However, there are few models for estimation of carbon emissions from grassland fires. Accurate estimation of direct carbon emissions from grassland fires is critical to quantifying the contribution of grassland fires to the regional balance of atmospheric carbon. In this study, the regression equations for aboveground biomass (AGB) of grassland in growing season and MODIS NDVI (Normalized Difference Vegetation Index) were established through field experiments, then AGB during Nov.-Apr. were retrieved based on that in Oct. and decline rate, finally surface fuel load was obtained for whole year. Based on controlled combustion experiments of different grassland types in Inner Mongolia, the carbon emission rate of grassland fires for each grassland type were determined, then carbon emission was estimated using proposed method and carbon emission rate. Results revealed that annual average surface fuel load of grasslands in Inner Mongolia during 2000-2016 was approximately 1.1978×1012 kg. The total area of grassland which was burned in the Inner Mongolia region over the 17-year period was 5298.75 km2, with the annual average area of 311.69 km2. The spatial distribution of grassland surface fuel loads is characterized by decreasing from northeast to southwest in Inner Mongolia. The total carbon emissions from grassland fires amounted to 2.24×107 kg with an annual average of 1.32×106 for the study area. The areas with most carbon emissions were mainly concentrated in Old Barag Banner and New Barag Right Banner and on the right side of the Oroqin Autonomous Banner. The spatial characteristics of carbon emission depend on the location of grassland fire, mainly in the northeast of Inner Mongolia include Hulunbuir City, Hinggan League, Xilin Gol League and Ulanqab City. The area and spatial location of grassland fires can directly affect the total amount and spatial distribution of carbon emissions. This study provides a reference for estimating carbon emissions from steppe fires. The model and framework for estimation of carbon emissions from grassland fires established can provide a reference value for estimation of carbon emissions from grassland fires in other regions.

English Abstract

YU Shan, JIANG Li, DU Wala, ZHAO Jianjun, ZHANG Hongyan, ZHANG Qiaofeng, LIU Huijuan. Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China[J]. 中国地理科学, 2020, 30(4): 572-587. doi: 10.1007/s11769-020-1134-z
引用本文: YU Shan, JIANG Li, DU Wala, ZHAO Jianjun, ZHANG Hongyan, ZHANG Qiaofeng, LIU Huijuan. Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China[J]. 中国地理科学, 2020, 30(4): 572-587. doi: 10.1007/s11769-020-1134-z
YU Shan, JIANG Li, DU Wala, ZHAO Jianjun, ZHANG Hongyan, ZHANG Qiaofeng, LIU Huijuan. Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China[J]. Chinese Geographical Science, 2020, 30(4): 572-587. doi: 10.1007/s11769-020-1134-z
Citation: YU Shan, JIANG Li, DU Wala, ZHAO Jianjun, ZHANG Hongyan, ZHANG Qiaofeng, LIU Huijuan. Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China[J]. Chinese Geographical Science, 2020, 30(4): 572-587. doi: 10.1007/s11769-020-1134-z
参考文献 (50)

目录

    /

    返回文章
    返回