留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis

CHENG Caifeng LI Min XUE Zhenshan ZHANG Zongsheng LYU Xianguo JIANG Ming ZHANG Hongri

CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. 中国地理科学, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
引用本文: CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. 中国地理科学, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. Chinese Geographical Science, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
Citation: CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. Chinese Geographical Science, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3

Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis

doi: 10.1007/s11769-020-1122-3
基金项目: 

Under the auspices of the National Natural Science Foundation of China (Nos. U19A2042, 41471081, 41671081, 41671087), the National Key Research and Development Program of China (Nos. 2017YFC0505901, 2016YFC050040106, 2016YFA060230302), the Youth Innovation Promotion Association, Chinese Acadmy of Sciences (No. 2018265)

详细信息
    通讯作者:

    XUE Zhenshan.E-mail:xuezhenshan@iga.ac.cn

Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis

Funds: 

Under the auspices of the National Natural Science Foundation of China (Nos. U19A2042, 41471081, 41671081, 41671087), the National Key Research and Development Program of China (Nos. 2017YFC0505901, 2016YFC050040106, 2016YFA060230302), the Youth Innovation Promotion Association, Chinese Acadmy of Sciences (No. 2018265)

  • 摘要: Global numerous wetlands are the most productive ecosystem and have high carbon sequestration potential to mitigate increasing CO2 in the atmosphere. However, few are available on estimating average carbon sequestration rates by global wetlands (Carbonsq) at century timescale. In this article, Carbonsq data of 473 wetland soil/sediment cores from the literatures were collected in detail by the meta-analysis method. These cores were no more than 300 years old and spanned a latitudinal range from 33.6° S to 69.7° N. Globally, the average Carbonsq was 185.2 g/(m2·yr) regardless of wetland types. Carbonsq varied remarkably between wetland types and ranked as an order of salt marsh (247.7 g/(m2·yr)) > mangrove (229.8 g/(m2·yr)) > freshwater marsh (196.7 g/(m2·yr)) > peatland (76.9 g/(m2·yr)). Carbonsq was positively related to mean annual temperature (AMT) and annual precipitation (Pre). Nitrogen was the most common and primary factor controlling Carbonsq regardless of wetland types.
  • [1] Ackerman D, Millet D B, Chen X, 2019. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 33(1):100-107. doi:10.1029/2018GB 005990
    [2] Baldwin A H, Jensen K, Schönfeldt M, 2014. Warming increases plant biomass and reduces diversity across continents, latitudes, and species migration scenarios in experimental wetland communities. Global Change Biology, 20(3):835-850. doi: 10.1111/gcb.12378
    [3] Bernal B, Mitsch W J, 2013. Carbon sequestration in freshwater wetlands in costa rica and botswana. Biogeochemistry, 115(1-3):77-93. doi: 10.1007/s10533-012-9819-8
    [4] Bertolucci E, Galletti A M R, Antonetti C et al., 2015. Chemical and magnetic properties characterization of magnetic nanoparticles. In:Proceedings of 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings. Pisa, Italy:IEEE, 1492-1496. doi: 10.1109/I2MTC.2015.7151498
    [5] Bianchi T S, Allison M A, Zhao J et al., 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico:linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science, 119:7-16. doi: 10.1016/j.ecss.2012.12.007
    [6] Black T A, Chen W J, Barr A G et al., 2000. Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophysical Research Letters, 27(9):1271-1274. doi: 10.1029/1999GL011234
    [7] Bobbink R, Hicks K, Galloway J et al., 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity:a synthesis. Ecological Applications, 20(1):30-59. doi: 10.1890/08-1140.1
    [8] Boyero L, Pearson R G, Gessner M O et al., 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 14(3):289-294. doi: 10.1111/j.1461-0248.2010.01578.x
    [9] Bridgham S D, Johnston C A, Pastor J et al., 1995. Potential feedbacks of northern wetlands on climate change:an outline of an approach to predict climate-change impact. BioScience, 45(4):262-274. doi: 10.2307/1312419
    [10] Bridgham S D, Megonigal J P, Keller J K et al., 2006. The carbon balance of north american wetlands. Wetlands, 26(4):889-916. doi:10.1672/0277-5212(2006)26[889:TCBONA] 2.0.CO;2
    [11] Burdige D J, Zheng S L, 1998. The biogeochemical cycling of dissolved organic nitrogen in estuarine sediments. Limnology and Oceanography, 43(8):1796-1813. doi:10.4319/lo.1998. 43.8.1796
    [12] Chmura G L, Anisfeld S C, Cahoon D R et al., 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4):1111. doi:10.1029/2002GB 001917
    [13] Drake B G, 2014. Rising sea level, temperature, and precipitation impact plant and ecosystem responses to elevated CO2 on a chesapeake bay wetland:review of a 28-year study. Global Change Biology, 20(11):3329-3343. doi: 10.1111/gcb.12631
    [14] Fan Z S, McGuire A D, Turetsky M R et al., 2013. The response of soil organic carbon of a rich fen peatland in interior alaska to projected climate change. Global Change Biology, 19(2):604-620. doi: 10.1111/gcb.12041
    [15] Feng X J, Simpson A J, Wilson K P et al., 2008. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geoscience, 1(12):836-839. doi: 10.1038/ngeo361
    [16] Hågvar S, Klanderud K, 2009. Effect of simulated environmental change on alpine soil arthropods. Global Change Biology, 15(12):2972-2980. doi: 10.1111/j.1365-2486.2009.01926.x
    [17] Helbig M, Chasmer L E, Desai A R et al., 2017. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape. Global Change Biology, 23(8):3231-3248. doi: 10.1111/gcb.13638
    [18] Hessen D O, Ågren G I, Anderson T R et al., 2004. Carbon sequestration in ecosystems:the role of stoichiometry. Ecology, 85(5):1179-1192. doi: 10.1890/02-0251
    [19] Kayranli B, Scholz M, Mustafa A et al., 2010. Carbon storage and fluxes within freshwater wetlands:a critical review. Wetlands, 30(1):111-124. doi: 10.1007/s13157-009-0003-4
    [20] Kettunen A, Kaitala V, Lehtinen A et al., 1999. Methane production and oxidation potentials in relation to water table fluctuations in two boreal mires. Soil Biology and Biochemistry, 31(12):1741-1749. doi: 10.1016/S0038-0717(99)00093-0
    [21] Kirkby C A, Richardson A E, Wade L J et al., 2013. Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biology and Biochemistry, 60:77-86. doi: 10.1016/j.soilbio.2013.01.011
    [22] Lang B, Rall B C, Scheu S et al., 2014. Effects of environmental warming and drought on size-structured soil food webs. Oikos, 123(10):1224-1233. doi: 10.1111/j.1600-0706.2013.00894.x
    [23] LeBauer D S, Treseder K K, 2008. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2):371-379. doi: 10.1890/06-2057.1
    [24] Li Zi, Zhang Zhongsheng, Xue Zhenshan et al., 2019. Molecular fingerprints of soil organic matter in a typical freshwater wetland in Northeast China. Chinese Geographical Science, 29(4):700-708. doi: 10.1007/s11769-019-1062-y
    [25] Loomis M J, Craft C B, 2010. Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, georgia, USA. Soil Science Society of America, 74(3):1028-1036. doi: 10.2136/sssaj2009.0171
    [26] Macdonald J A, Fowler D, Hargreaves K J et al., 1998. Methane emission rates from a northern wetland; response to temperature, water table and transport. Atmospheric Environment, 32(19):3219-3227. doi: 10.1016/S1352-2310(97)00464-0
    [27] Martina J P, Currie W S, Goldberg D E et al., 2016. Nitrogen loading leads to increased carbon accretion in both invaded and uninvaded coastal wetlands. Ecosphere, 7(9):e01459. doi: 10.1002/ecs2.1459
    [28] Mitsch W J, Bernal B, Nahlik A M et al., 2013. Wetlands, carbon, and climate change. Landscape Ecology, 28(4):583-597. doi: 10.1007/s10980-012-9758-8
    [29] Morris J T, Bradley P M, 1999. Effects of nutrient loading on the carbon balance of coastal wetland sediments. Limnology and Oceanography, 44(3):699-702. doi:10.4319/lo.1999.44. 3.0699
    [30] Nadelhoffer K J, Emmett B A, Gundersen P et al., 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature, 398(6723):145-148. doi: 10.1038/18205
    [31] Nakatsubo T, Uchida M, Sasaki A et al., 2015. Carbon accumulation rate of peatland in the High Arctic, Svalbard:implications for carbon sequestration. Polar Science, 9(2):267-275. doi: 10.1016/j.polar.2014.12.002
    [32] Noe G B, Hupp C R, 2005. Carbon, nitrogen, and phosphorus accumulation in floodplains of atlantic coastal plain rivers, USA. Ecological Applications, 15(4):1178-1190. doi: 10.1890/04-1677
    [33] O'Lear H A, Blair J M, 1999. Responses of soil microarthropods to changes in soil water availability in tallgrass prairie. Biology and Fertility of Soils, 29(2):207-217. doi: 10.1007/s003740050546
    [34] Page S E, Rieley J O, Banks C J, 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17(2):798-818. doi:10.1111/j.1365-2486.2010. 02279.x
    [35] Peng S S, Piao S L, Ciais P et al., 2013. Asymmetric effects of daytime and night-time warming on northern hemisphere vegetation. Nature, 501(7465):88-92. doi: 10.1038/nature12434
    [36] Reay D S, Dentener F, Smith P et al., 2008. Global nitrogen deposition and carbon sinks. Nature Geoscience, 1(7):430-437. doi: 10.1038/ngeo230
    [37] Reddy K R, DeLaune R D, 2008. Biogeochemistry of Wetlands:Science and Applications. Boca Raton:CRC Press, 1779.
    [38] Sackett T E, Classen A T, Sanders N J, 2010. Linking soil food web structure to above- and belowground ecosystem processes:a meta-analysis. Oikos, 119(12):1984-1992. doi: 10.1111/j.1600-0706.2010.18728.x
    [39] Schuur E A G, McGuire A D, Schädel C et al., 2015. Climate change and the permafrost carbon feedback. Nature, 520(7546):171-179. doi: 10.1038/nature14338
    [40] Song Y Y, Song C C, Meng H N et al., 2017. Nitrogen additions affect litter quality and soil biochemical properties in a peatland of Northeast China. Ecological Engineering, 100:175-185. doi: 10.1016/j.ecoleng.2016.12.025
    [41] Sulman B N, Desai A R, Mladenoff D J, 2013. Modeling soil and biomass carbon responses to declining water table in a wetland-rich landscape. Ecosystems, 16(3):491-507. doi: 10.1007/s10021-012-9624-1
    [42] Sundareshwar P V, Morris J T, Koepfler E K et al., 2003. Phosphorus limitation of coastal ecosystem processes. Science, 299(5606):563-565. doi: 10.1126/science.1079100
    [43] Sutfin N A, Wohl E E, Dwire K A, 2016. Banking carbon:a review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surface Processes and Landforms, 41(1):38-60. doi: 10.1002/esp.3857
    [44] Tao B X, Song C C, Guo Y D, 2013. Short-term effects of nitrogen additions and increased temperature on wetland soil respiration, sanjiang plain, China. Wetlands, 33(4):727-736. doi: 10.1007/s13157-013-0432-y
    [45] Turetsky M R, Treat C C, Waldrop M P et al., 2008. Short-term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an alaskan peatland. Journal of Geophysical Research, 113(G3):G00A10. doi: 10.1029/2007JG000496
    [46] Turunen J, Roulet N T, Moore T R et al., 2004. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochemical Cycles, 18(3):GB3002. doi: 10.1029/2003GB002154
    [47] Valiela I, Geist M, McClelland J et al., 2000. Nitrogen loading from watersheds to estuaries:verification of the waquoit bay nitrogen loading model. Biogeochemistry, 49(3):277-293. doi: 10.1023/A:1006345024374
    [48] Vitousek P M, Howarth R W, 1991. Nitrogen limitation on land and in the sea:how can it occur? Biogeochemistry, 13(2):87-115. doi: 10.1007/BF00002772
    [49] Vitousek P M, Porder S, Houlton B Z et al., 2010. Terrestrial phosphorus limitation:mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20(1):5-15. doi: 10.1890/08-0127.1
    [50] Wall D H, Nielsen U N, Six J, 2015. Soil biodiversity and human health. Nature, 528(7580):69-76. doi: 10.1038/nature15744
    [51] Wan S Q, Hui D F, Wallace L et al., 2005. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Global Biogeochemical Cycles, 19(2):GB2014. doi: 10.1029/2004GB002315
    [52] Waughman G J, Bellamy D J, 1980. Nitrogen fixation and the nitrogen balance in peatland ecosystems. Ecology, 61(5):1185-1198. doi: 10.2307/1936837
    [53] Whiting G J, Chanton J P, 2001. Greenhouse carbon balance of wetlands:methane emission versus carbon sequestration. Tellus B:Chemical and Physical Meteorology, 53(5):521-528. doi: 10.3402/tellusb.v53i5.16628
    [54] Wissing L, Kölbl A, Schad P et al., 2014. Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma, 228-229:90-103. doi: 10.1016/j.geoderma.2013.12.012
    [55] Yang Jisong, Liu Jingshuang, Yu Junbao et al., 2005. Effects of water table and nitrogen addition on CO2 emission from wetland soil. Chinese Geographical Science, 15(3):262-268. doi: 10.1007/s11769-005-0039-1
    [56] Zhang Z S, Craft C, Xue Z S et al., 2016. Regulating effects of climate, net primary productivity, and nitrogen on carbon sequestration rates in temperate wetlands, Northeast China. Ecological Indicators, 70:114-124. doi:10.1016/j.ecolind.2016. 05.041
    [57] Zhang Z S, Xue Z S, Lu X G et al., 2017. Warming in spring and summer lessens carbon accumulation over the past century in temperate wetlands of Northeast China. Wetlands, 37(5):829-836. doi: 10.1007/s13157-017-0915-3
  • [1] YANG Yanli, MOU Xiaojie, WEN Bolong, LIU Xingtu.  Soil Carbon, Nitrogen and Phosphorus Concentrations and Stoichi-ometries Across a Chronosequence of Restored Inland Soda Saline-Alkali Wetlands, Western Songnen Plain, Northeast China . Chinese Geographical Science, 2020, 30(5): 934-946. doi: 10.1007/s11769-020-1155-7
    [2] WU Yalin, HUANG Tao, HUANG Changchun, SHEN Yinyin, LUO Yang, YANG Hao, YU Yanhong, LI Ruixiao, GAO Yan, ZHANG Mingli.  Internal Loads and Bioavailability of Phosphorus and Nitrogen in Dianchi Lake, China . Chinese Geographical Science, 2018, 28(5): 851-862. doi: 10.1007/s11769-018-0994-y
    [3] XU Li, WEN Ding, ZHU Jianxing, HE Nianpeng.  Regional Variation in Carbon Sequestration Potential of Forest Ecosystems in China . Chinese Geographical Science, 2017, 27(3): 337-350. doi: 10.1007/s11769-017-0870-1
    [4] ZHANG Zhongsheng, XUE Zhenshan, LYU Xianguo, TONG Shouzheng, JIANG Ming.  Scaling of Soil Carbon, Nitrogen, Phosphorus and C:N:P Ratio Patterns in Peatlands of China . Chinese Geographical Science, 2017, 27(4): 507-515. doi: 10.1007/s11769-017-0884-8
    [5] LYU Mingzhi, SHENG Lianxi, ZHANG Zhongsheng, ZHANG Li.  Distribution and Accumulation of Soil Carbon in Temperate Wetland, Northeast China . Chinese Geographical Science, 2016, 26(3): 295-303. doi: 10.1007/s11769-016-0809-y
    [6] CHAI Hua, YU Guirui, HE Nianpeng, WEN Ding, LI Jie, FANG Jiangping.  Vertical Distribution of Soil Carbon, Nitrogen, and Phosphorus in Typical Chinese Terrestrial Ecosystems . Chinese Geographical Science, 2015, 25(5): 549-560. doi: 10.1007/s11769-015-0756-z
    [7] LIU Guohua, WU Xing.  Carbon Storage and Sequestration of National Key Ecological Restora-tion Programs in China: An Introduction to Special Issue . Chinese Geographical Science, 2014, 0(4): 393-396. doi: 10.1007/s11769-014-0695-0
    [8] ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei.  Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China . Chinese Geographical Science, 2014, 0(4): 461-470. doi: 10.1007/s11769-014-0701-6
    [9] ZHOU Wangming, Bernard Joseph LEWIS, WU Shengnan, YU Dapao, ZHOU Li, WEI Yawei.  Biomass Carbon Storage and Its Sequestration Potential of Afforestation under Natural Forest Protection Program in China . Chinese Geographical Science, 2014, 0(4): 406-413. doi: 10.1007/s11769-014-0702-5
    [10] LIU Wenhui, ZHU Jiaojun, JIA Quanquan, ZHENG Xiao, LI Junsheng, LOU Xuedong, HU Lile.  Carbon Sequestration Effects of Shrublands in Three-North Shelterbelt Forest Region, China . Chinese Geographical Science, 2014, 0(4): 444-453. doi: 10.1007/s11769-014-0698-x
    [11] WANG Lili, YE Mei, LI Qusheng, ZOU Hang, ZHOU Yongsheng.  Phosphorus Speciation in Wetland Sediments of Zhujiang (Pearl) River Estuary, China . Chinese Geographical Science, 2013, 23(5): 574-583. doi: 10.1007/s11769-013-0627-4
    [12] XIAO Yu, AN Kai, XIE Gaodi, LU Chunxia, ZHANG Biao.  Carbon Sequestration in Forest Vegetation of Beijing at Sublot Level . Chinese Geographical Science, 2011, 21(3): 279-289.
    [13] GAO Junqin, OUYANG Hua, LEI Guangchun et al..  Temperature and Soil Moisture Interactively Affect Soil Carbon Mineralization in Zoige Alpine Wetlands . Chinese Geographical Science, 2011, 21(1): 27-35.
    [14] GUO Lei, MA Keming.  Seasonal Dynamics of Nitrogen and Phosphorus in Water and Sediment of A Multi-level Ditch System in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2011, 21(4): 437-445.
    [15] YAO Shuchun, XUE Bin, KONG Deyang.  Chronology and Nutrients Change in Recent Sediment of Taihu Lake, Lower Changjiang River Basin, East China . Chinese Geographical Science, 2010, 20(3): 202-208. doi: 10.1007/s11769-010-0202-1
    [16] XU Xinliang, LI Kerang.  Biomass Carbon Sequestration by Planted Forests in China . Chinese Geographical Science, 2010, 20(4): 289-297. doi: 10.1007/s11769-010-0401-9
    [17] WEN Yanmao, WEI Xiange, SHU Tingfei, ZHOU Jingfeng, YU Guanghui, LI Feng, HUANG Yanyun.  Forms and Balance of Nitrogen and Phosphorus in Cage Culture Waters in Guangdong Province, China . Chinese Geographical Science, 2007, 17(4): 370-375. doi: 10.1007/s11769-007-0370-9
    [18] XU Zhiguo, YAN Baixing, HE Yan, ZHAI Jinliang, SONG Changchun.  Effect of Nitrogen and Phosphorus on Tissue Nutrition and Biomass of Freshwater Wetland Plant in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2006, 16(3): 270-275.
    [19] 方精云, 刘绍辉, 赵坤.  FACTORS AFFECTING SOIL RESPIRATION IN REFERENCE WITH TEMPERATURE'S ROLE IN THE GLOBAL SCALE . Chinese Geographical Science, 1998, 8(3): 246-255.
    [20] 章新平, 施雅风, 姚檀栋.  RELATION BETWEEN δ18O IN ATMOSPHERIC PRECIPITATION AND TEMPERATURE AND PRECIPITATION . Chinese Geographical Science, 1995, 5(4): 289-299.
  • 加载中
计量
  • 文章访问数:  364
  • HTML全文浏览量:  11
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-26
  • 修回日期:  2019-09-09

Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis

doi: 10.1007/s11769-020-1122-3
    基金项目:

    Under the auspices of the National Natural Science Foundation of China (Nos. U19A2042, 41471081, 41671081, 41671087), the National Key Research and Development Program of China (Nos. 2017YFC0505901, 2016YFC050040106, 2016YFA060230302), the Youth Innovation Promotion Association, Chinese Acadmy of Sciences (No. 2018265)

    通讯作者: XUE Zhenshan.E-mail:xuezhenshan@iga.ac.cn

摘要: Global numerous wetlands are the most productive ecosystem and have high carbon sequestration potential to mitigate increasing CO2 in the atmosphere. However, few are available on estimating average carbon sequestration rates by global wetlands (Carbonsq) at century timescale. In this article, Carbonsq data of 473 wetland soil/sediment cores from the literatures were collected in detail by the meta-analysis method. These cores were no more than 300 years old and spanned a latitudinal range from 33.6° S to 69.7° N. Globally, the average Carbonsq was 185.2 g/(m2·yr) regardless of wetland types. Carbonsq varied remarkably between wetland types and ranked as an order of salt marsh (247.7 g/(m2·yr)) > mangrove (229.8 g/(m2·yr)) > freshwater marsh (196.7 g/(m2·yr)) > peatland (76.9 g/(m2·yr)). Carbonsq was positively related to mean annual temperature (AMT) and annual precipitation (Pre). Nitrogen was the most common and primary factor controlling Carbonsq regardless of wetland types.

English Abstract

CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. 中国地理科学, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
引用本文: CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. 中国地理科学, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. Chinese Geographical Science, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
Citation: CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri. Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis[J]. Chinese Geographical Science, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
参考文献 (57)

目录

    /

    返回文章
    返回