留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China

KUANG Wenhui

KUANG Wenhui. Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China[J]. 中国地理科学, 2020, 30(1): 75-88. doi: 10.1007/s11769-020-1097-0
引用本文: KUANG Wenhui. Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China[J]. 中国地理科学, 2020, 30(1): 75-88. doi: 10.1007/s11769-020-1097-0
KUANG Wenhui. Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China[J]. Chinese Geographical Science, 2020, 30(1): 75-88. doi: 10.1007/s11769-020-1097-0
Citation: KUANG Wenhui. Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China[J]. Chinese Geographical Science, 2020, 30(1): 75-88. doi: 10.1007/s11769-020-1097-0

Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China

doi: 10.1007/s11769-020-1097-0
基金项目: 

Under the auspices of National Natural Science Foundation of China (No. 41871343), Major Project of National Natural Science Foundation of China (No. 41590842)

Strategic Priority Research Program A of the Chinese Academy of Sciences (No. XDA23100201)

详细信息
    通讯作者:

    KUANG Wenhui.E-mail:kuangwh@igsnrr.ac.cn

Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China

Funds: 

Under the auspices of National Natural Science Foundation of China (No. 41871343), Major Project of National Natural Science Foundation of China (No. 41590842)

Strategic Priority Research Program A of the Chinese Academy of Sciences (No. XDA23100201)

  • 摘要: The cooling and humidifying effects of urban parks are an essential component of city ecosystems in terms of regulating microclimates or mitigating urban heat islands (UHIs). Air temperature and relative humidity are two main factors of thermal environmental comfort and have a critical impact on the urban environmental quality of human settlements. We measured the 2-m height air temperature and relative humidity at the Beijing Olympic Park and a nearby building roof for more than 1 year to elucidate seasonal variations in air temperature and relative humidity, as well as to investigate the outdoor thermal comfort. The results showed that the lawn of the park could, on average, reduce the air temperature by (0.80±0.19)℃, and increase the relative humidity by (5.24±2.91)% relative to the values measured at the building roof during daytime. During the nighttime, the lawn of the park reduced the air temperature by (2.64±0.64)℃ and increased the relative humidity by (10.77±5.20)%. The park was cooler and more humid than surrounding building area, especially in night period (more pronounced cooling with 1.84℃). Additionally, the lawn of the park could improve outdoor thermal comfort through its cooling and humidifying effects. The level of thermal comfort in the park was higher than that around the building roof for a total of 11 days annually in which it was above one or more thermal comfort levels (average reduced human comfort index of 0.92) except during the winter.
  • [1] Allen III W L, 2012. Environmental reviews and case studies:advancing green infrastructure at all scales:from landscape to site. Environmental Practice, 14(1):17-25. doi: 10.1017/S1466046611000469
    [2] Amani-Beni M, Zhang B, Xie G D et al., 2018. Impact of urban park's tree, grass and waterbody on microclimate in hot summer days:a case study of Olympic Park in Beijing, China. Urban Forestry & Urban Greening, 32:1-6. doi: 10.1016/j.ufug.2018.03.016
    [3] Bowler D E, Buyung-Ali L, Knight T M et al., 2010. Urban greening to cool towns and cities:a systematic review of the empirical evidence. Landscape and Urban Planning, 97(3):147-155. doi: 10.1016/j.landurbplan.2010.05.006
    [4] Chang C R, Li M H, Chang S D, 2007. A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 80(4):386-395. doi:10.1016/j.landurbplan. 2006.09.005
    [5] Chapman S, Watson J E M, Salazar A et al., 2017. The impact of urbanization and climate change on urban temperatures:a sys-tematic review. Landscape Ecology, 32(10):1921-1935. doi: 10.1007/s10980-017-0561-4
    [6] Chen K, Zhou L, Chen X D et al., 2016. Urbanization level and vulnerability to heat-related mortality in Jiangsu province, China. Environ Health Perspect, 124(12):1863-1869. doi: 10.1289/EHP204
    [7] Chen P Y, Tung C P, Lin W C et al., 2016. Spatial optimization procedure for land-use arrangement in a community based on a human comfort perspective. Paddy and Water Environment, 14(1):71-83. doi: 10.1007/s10333-015-0479-x
    [8] Chen X Z, Su Y X, Li D et al., 2012. Study on the cooling effects of urban parks on surrounding environments using Landsat TM data:a case study in Guangzhou, southern China. International Journal of Remote Sensing, 33(18):5889-5914. doi: 10.1080/01431161.2012.676743
    [9] Chow W T L, Pope R L, Martin C A et al., 2011. Observing and modeling the nocturnal park cool island of an arid city:hori-zontal and vertical impacts. Theoretical and Applied Clima-tology, 103(1-2):197-211. doi: 10.1007/s00704-010-0293-8
    [10] Coccolo S, Kämpf J, Scartezzini J L et al., 2016. Outdoor human comfort and thermal stress:a comprehensive review on models and standards. Urban Climate, 18:33-57. doi: 10.1016/j.uclim.2016.08.004
    [11] Coccolo S, Pearlmutter D, Kaempf J et al., 2018. Thermal comfort maps to estimate the impact of urban greening on the outdoor human comfort. Urban Forestry & Urban Greening, 35:91-105. doi: 10.1016/j.ufug.2018.08.007
    [12] Dai Z W, Wu S T, Cheng H S et al., 2018. Effect of vegetation on summer microclimate in suburban forest park:a case study of Fuzhou National Forest Park. Journal of Chinese Urban For-estry, 16(6):1-5. (in Chinese)
    [13] De Freitas C R, Grigorieva E A, 2015. A comprehensive catalogue and classification of human thermal climate indices. In-ternational Journal of Biometeorology, 59(1):109-120. doi:10. 1007/s00484-014-0819-3
    [14] Doick K J, Peace A, Hutchings T R, 2014. The role of one large greenspace in mitigating London's nocturnal urban heat island. Science of the Total Environment, 493:662-671. doi: 10.1016/j.scitotenv.2014.06.048
    [15] Dong J W, Kuang W H, Liu J Y, 2017. Continuous land cover change monitoring in the remote sensing big data era. Science China Earth Sciences, 60(12):2223-2224. doi: 10.1007/s11430-017-9143-3
    [16] Fahmy M, Sharples S, Yahiya M, 2010. LAI based trees selection for mid latitude urban developments:a microclimatic study in Cairo, Egypt. Building and Environment, 45(2):345-357. doi: 10.1016/j.buildenv.2009.06.014
    [17] Fang L, Clausen G, Fanger P O, 1998. Impact of temperature and humidity on perception of indoor air quality during immediate and longer whole-body exposures. Indoor Air, 8(4):276-284. doi: 10.1111/j.1600-0668.1998.00008.x
    [18] Frankel M, Bekö G, Timm M et al., 2012. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate. Applied and Envi-ronmental Microbiology, 78(23):8289-8297. doi: 10.1128/AEM.02069-12
    [19] Giannopoulou K, Livada I, Santamouris M et al., 2014. The in-fluence of air temperature and humidity on human thermal comfort over the greater Athens area. Sustainable Cities and Society, 10:184-194. doi: 10.1016/j.scs.2013.09.004
    [20] Gill S E, Handley J F, Ennos A R et al., 2007. Adapting cities for climate change:the role of the green infrastructure. Built En-vironment, 33(1):115-133. doi: 10.2148/benv.33.1.115
    [21] Givoni B, 1991. Impact of planted areas on urban environmental quality:a review. Atmospheric Environment. Part B. Urban Atmosphere, 25(3):289-299. doi:10.1016/0957-1272(91) 90001-U
    [22] Grimm N B, Faeth S H, Golubiewski N E et al., 2008. Global change and the ecology of cities. Science, 319(5864):756-760. doi: 10.1126/science.1150195
    [23] Hamada S, Ohta T, 2010. Seasonal variations in the cooling effect of urban green areas on surrounding urban areas. Urban For-estry & Urban Greening, 9(1):15-24. doi:10.1016/j.ufug. 2009.10.002
    [24] Harvell C D, Mitchell C E, Ward J R et al., 2002. Climate warming and disease risks for terrestrial and marine biota. Science, 296(5576):2158-2162. doi: 10.1126/science.1063699
    [25] Hathway E A, Sharples S, 2012. The interaction of rivers and urban form in mitigating the Urban Heat Island effect:a UK case study. Building and Environment, 58:14-22. doi: 10.1016/j.buildenv.2012.06.013
    [26] Höppe P, 1999. The physiological equivalent temperature:a uni-versal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43(2):71-75. doi: 10.1007/s004840050118
    [27] IPCC Intergovernmental Panel on Climate Change. 2015. Climate Change 2014:Mitigation of Climate Change:Working Group III Contribution to the IPCC Fifth Assessment Report. Cam-bridge:Cambridge University Press. https://doi.org/10.1017/CBO9781107415416.
    [28] Kalnay E, Cai M, 2003. Impact of urbanization and land-use change on climate. Nature, 423(6939):528-531. doi: 10.1038/nature01675
    [29] Kikon N, Singh P, Singh S K et al., 2016. Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustainable Cities and Society, 22:19-28. doi: 10.1016/j.scs.2016.01.005
    [30] Koken P J M, Piver W T, Ye F et al., 2003. Temperature, air pol-lution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environmental Health Perspectives, 111(10):1312-1317. doi: 10.1289/ehp.5957
    [31] Kolokotroni M, Giannitsaris I, Watkins R, 2006. The effect of the London urban heat island on building summer cooling demand and night ventilation strategies. Solar Energy, 80(4):383-392. doi: 10.1016/j.solener.2005.03.010
    [32] Kong F H, Yan W J, Zheng G et al., 2016. Retrieval of three-dimensional tree canopy and shade using terrestrial laser scanning (TLS) data to analyze the cooling effect of vegetation. Agricultural and Forest Meteorology, 217:22-34. doi: 10.1016/j.agrformet.2015.11.005
    [33] Kuang W H, 2019a. New evidences on anomalous phenomenon of buildings in regulating urban climate from observations in Beijing, China. Earth and Space Science, 6(5):861-872. doi: 10.1029/2018ea000542
    [34] Kuang W H, Liu A L, Dou Y Y et al., 2019. Examining the impacts of urbanization on surface radiation using Landsat imagery. GIScience & Remote Sensing, 56(3):462-484. doi: 10.1080/15481603.2018.1508931
    [35] Kuang W H, Liu Y, Dou Y Y et al., 2015. What are hot and what are not in an urban landscape:quantifying and explaining the land surface temperature pattern in Beijing, China. Landscape Ecology, 30(2):357-373. doi: 10.1007/s10980-014-0128-6
    [36] Kuang W H, 2019b. Mapping global impervious surface area and green space within urban environments. Science China Earth Sciences, 62, 1591(2019). doi: 10.1007/s11430-018-9342-3
    [37] Kuang W H, Chen L J, Liu J Y et al., 2016. Remote sensing-based artificial surface cover classification in Asia and spatial pattern analysis. Science China Earth Sciences, 59(9):1720-1737. doi: 10.1007/s11430-016-5295-7
    [38] Kuang W H, Yang T R, Liu A L et al., 2017. An EcoCity model for regulating urban land cover structure and thermal envi-ronment:taking Beijing as an example. Science China Earth Sciences, 60(6):1098-1109. doi: 10.1007/s11430-016-9032-9
    [39] Lazzarini M, Marpu P R, Ghedira H, 2013. Temperature-land cover interactions:the inversion of urban heat island phenom-enon in desert city areas. Remote Sensing of Environment, 130:136-152. doi: 10.1016/j.rse.2012.11.007
    [40] Li L, Zha Y, 2018. Mapping relative humidity, average and extreme temperature in hot summer over China. Science of the Total Environment, 615:875-881. doi:10.1016/j.scitotenv. 2017.10.022
    [41] Liu J M, Li S H, Yang Z F, 2008. Temperature and humidity effect of urban green spaces in Beijing in summer. Chinese Journal of Ecology, 27(11):1972-1978. (in Chinese)
    [42] Medina-Ramón M, Schwartz J, 2007. Temperature, temperature extremes, and mortality:a study of acclimatisation and effect modification in 50 US cities. Occupational and Environmental Medicine, 64(12):827-833. doi: 10.1136/oem.2007.033175
    [43] Middel A, Häb K, Brazel A J et al., 2014. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122:16-28. doi: 10.1016/j.landurbplan.2013.11.004
    [44] Niemelä J, Saarela S R, Söderman T et al., 2010. Using the eco-system services approach for better planning and conservation of urban green spaces:a Finland case study. Biodiversity and Conservation, 19(11):3225-3243. doi: 10.1007/s10531-010-9888-8
    [45] Oke T R, 1982. The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society, 108(455):1-24. doi: 10.1002/qj.49710845502
    [46] Oke T R, 1989. The micrometeorology of the urban forest. Phil-osophical Transactions of the Royal Society B:Biological Sciences, 324(1223):335-349. doi: 10.1098/rstb.1989.0051
    [47] Oleson K W, Monaghan A, Wilhelmi O, et al., 2015. Interactions between urbanization, heat stress, and climate change. Climatic Change, 129(3-4):525-541. doi: 10.1007/s10584-013-0936-8
    [48] Oliveira S, Andrade H, Vaz T, 2011. The cooling effect of green spaces as a contribution to the mitigation of urban heat:a case study in Lisbon. Building and Environment, 46(11):2186-2194. doi: 10.1016/j.buildenv.2011.04.034
    [49] Pearlmutter D, Berliner P, Shaviv E, 2006. Physical modeling of pedestrian energy exchange within the urban canopy. Building and Environment, 41(6):783-795. doi:10.1016/j.buildenv. 2005.03.017
    [50] Peng S S, Piao S L, Zeng Z Z et al., 2014. Afforestation in China cools local land surface temperature. Proceedings of the Na-tional Academy of Sciences of the United States of America, 111(8):2915-2919.
    [51] Potchter O, Cohen P, Bitan A, 2006. Climatic behavior of various urban parks during hot and humid summer in the mediterranean city of Tel Aviv, Israel. International Journal of Climatology, 26(12):1695-1711. doi: 10.1002/joc.1330
    [52] Sarrat C, Lemonsu A, Masson V et al., 2006. Impact of urban heat island on regional atmospheric pollution. Atmospheric Envi-ronment, 40(10):1743-1758. doi:10.1016/j.atmosenv.2005. 11.037
    [53] Shahmohamadi P, Che-Ani A I, Maulud K N A et al., 2011. The impact of anthropogenic heat on formation of urban heat island and energy consumption balance. Urban Studies Research, 2011:497524. doi: 10.1155/2011/497524
    [54] Shashua-Bar L, Pearlmutter D, Erell E, 2011. The influence of trees and grass on outdoor thermal comfort in a hot-arid envi-ronment. International Journal of Climatology, 31(10):1498-1506. doi: 10.1002/joc.2177
    [55] Sherwood S C, Ingram W, Tsushima Y et al., 2010. Relative hu-midity changes in a warmer climate. Journal of Geophysical Research, 115(D9):D09104. doi: 10.1029/2009jd012585
    [56] Shui T T, Liu J, Xiao Y, et al., 2019. Effects of snow cover on urban surface energy exchange:observations in Harbin, China during the winter season. International Journal of Climatology, 39(3):1230-1242. doi: 10.1002/joc.5873
    [57] Solecki W D, Rosenzweig C, Parshall L et al., 2005. Mitigation of the heat island effect in urban New Jersey. Global Environ-mental Change Part B:Environmental Hazards, 6(1):39-49.
    [58] Song J Y, Wang Z H, 2015. Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ. Building and Environment, 94:558-568. doi: 10.1016/j.buildenv.2015.10.016
    [59] Spagnolo J C, de Dear R J, 2003. A human thermal climatology of subtropical Sydney. International Journal of Climatology, 23(11):1383-1395. doi: 10.1002/joc.939
    [60] Spronken-Smith R A, Oke T R, 1999. Scale modelling of nocturnal cooling in urban parks. Boundary-Layer Meteorology, 93(2):287-312. doi: 10.1023/a:1002001408973
    [61] Sugawara H, Shimizu S, Takahashi H et al., 2016. Thermal influ-ence of a large green space on a hot urban environment. Journal of Environmental Quality, 45(1):125-133. doi: 10.2134/jeq2015.01.0049
    [62] Sun S B, Xu X Y, Lao Z M et al., 2017. Evaluating the impact of urban green space and landscape design parameters on thermal comfort in hot summer by numerical simulation. Building and Environment, 123:277-288. doi:10.1016/j.buildenv.2017. 07.010
    [63] Takács Á, Kiss M, Hof A et al., 2016. Microclimate modification by urban shade trees-an integrated approach to aid ecosystem service based decision-making. Procedia Environmental Sci-ences, 32:97-109. doi: 10.1016/j.proenv.2016.03.015
    [64] Tan C L, Wong N H, Tan P Y et al., 2015. Impact of plant evapo-transpiration rate and shrub albedo on temperature reduction in the tropical outdoor environment. Building and Environment, 94:206-217. doi: 10.1016/j.buildenv.2015.08.001
    [65] Tan J G, Zheng Y F, Tang X et al., 2010. The urban heat island and its impact on heat waves and human health in Shanghai. International Journal of Biometeorology, 54(1):75-84. doi: 10.1007/s00484-009-0256-x
    [66] Terjung W H, 1966. Physiologic climates of the conterminous United States:a bioclimatic classification based on man. Annals of the Association of American Geographers, 56(1):141-179. doi: 10.1111/j.1467-8306.1966.tb00549.x
    [67] United Nations. 2014. World Urbanization Prospects:The 2014 Revision, New York:UN. https://www.un.org/development/de-sa/publications/2014-revision-world-urbanization-prospects.html
    [68] Vellei M, Herrera M, Fosas D et al., 2017. The influence of relative humidity on adaptive thermal comfort. Building and En-vironment, 124:171-185. doi: 10.1016/j.buildenv.2017.08.005
    [69] Voogt J A, Oke T R, 2003. Thermal remote sensing of urban cli-mates. Remote Sensing of Environment, 86(3):370-384. doi: 10.1016/s0034-4257(03)00079-8
    [70] Willett K M, Gillett N P, Jones P D, et al., 2007. Attribution of observed surface humidity changes to human influence. Nature, 449(7163):710-712. doi: 10.1038/nature06207
    [71] Wouters H, Demuzere M, de Ridder K, et al., 2015. The impact of impervious water-storage parametrization on urban climate modelling. Urban Climate, 11:24-50. doi:10.1016/j.uclim. 2014.11.005
    [72] Wu Dui, 2003. Discussion on various formulas for forecasting human comfort index. Meteorological Science and Technology, 31(6):370-372. (in Chinese)
    [73] Wu Z F, Chen L D, 2017. Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects:integrating modeling with in-situ measurements. Landscape and Urban Planning, 167:463-472. doi: 10.1016/j.landurbplan.2017.07.015
    [74] Xi T Y, Li Q, Mochida A et al., 2012. Study on the outdoor thermal environment and thermal comfort around campus clusters in subtropical urban areas. Building and Environment, 52:162-170. doi: 10.1016/j.buildenv.2011.11.006
    [75] Xu X Y, Sun S B, Liu W et al., 2017. The cooling and energy saving effect of landscape design parameters of urban park in summer:a case of Beijing, China. Energy and Buildings, 149:91-100. doi: 10.1016/j.enbuild.2017.05.052
    [76] Xu X X, Li X J, Meng D D, 2013. Impacts of Beijing different underlying surfaces on Urban Heat Islard Effect and human comfort. Journal of Capital Normal University (Natural Sci-ences Edition), 34(3):47-52, 76. (in Chinese)
    [77] Yan H, Wu F, Dong L, 2018. Influence of a large urban park on the local urban thermal environment. Science of the Total En-vironment, 622-623:882-891. doi:10.1016/j.scitotenv.2017. 11.327
    [78] Yang Q Q, Huang X, Li J Y, 2017. Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China. Scientific Reports, 7(1):9337. doi: 10.1038/s41598-017-09628-w
    [79] Zakšek K, Oštir K, 2012. Downscaling land surface temperature for urban heat island diurnal cycle analysis. Remote Sensing of Environment, 117:114-124. doi: 10.1016/j.rse.2011.05.027
    [80] Zhang B, Xie G D, Gao J X et al., 2014. The cooling effect of urban green spaces as a contribution to energy-saving and emis-sion-reduction:a case study in Beijing, China. Building and En-vironment, 76:37-43. doi: 10.1016/j.buildenv.2014.03.003
    [81] Zhao L, Lee X, Smith R B et al., 2014. Strong contributions of local background climate to urban heat islands. Nature, 511(7508):216-219. doi: 10.1038/nature13462
    [82] Zhou J, Chen Y C, Zhang X et al., 2013. Modelling the diurnal variations of urban heat islands with multi-source satellite data. International Journal of Remote Sensing, 34(21):7568-7588. doi: 10.1080/01431161.2013.821576
  • [1] Liping ZHANG, Liang ZHOU, Bo YUAN, Fengning HU, Qian ZHANG, Wei WEI, Dongqi SUN.  Spatiotemporal Evolution Characteristics of Urban Land Surface Temperature Based on Local Climate Zones in Xi’an Metropolitan, China . Chinese Geographical Science, 2023, 33(6): 1001-1016. doi: 10.1007/s11769-023-1387-4
    [2] Tian HE, Fuyuan LIU, Ao WANG, Zhanbo FEI.  Estimating Monthly Surface Air Temperature Using MODIS LST Data and an Artificial Neural Network in the Loess Plateau, China . Chinese Geographical Science, 2023, 33(4): 751-763. doi: 10.1007/s11769-023-1370-0
    [3] Guixin ZHANG, Shisheng WANG, Shanyou ZHU, Yongming XU.  Spatial Distribution of High-temperature Risk with a Return Period of Different Years in the Yangtze River Delta Urban Agglomeration . Chinese Geographical Science, 2022, 32(6): 963-978. doi: 10.1007/s11769-022-1314-0
    [4] Limin YANG, Xiaoyan LI, Beibei SHANG.  Impacts of Urban Expansion on the Urban Thermal Environment: A Case Study of Changchun, China . Chinese Geographical Science, 2022, 32(1): 79-92. doi: 10.1007/s11769-021-1251-3
    [5] WU Xiangli, LI Binxia, LI Miao, GUO Meixin, ZANG Shuying, ZHANG Shouzhi.  Examining the Relationship Between Spatial Configurations of Urban Impervious Surfaces and Land Surface Temperature . Chinese Geographical Science, 2019, 20(4): 568-578. doi: 10.1007/s11769-019-1055-x
    [6] LI Xiaolan, HU Xiaoming, SHI Shuaiyi, SHEN Lidu, LUAN Lan, MA Yanjun.  Spatiotemporal Variations and Regional Transport of Air Pollutants in Two Urban Agglomerations in Northeast China Plain . Chinese Geographical Science, 2019, 29(6): 917-933. doi: 10.1007/s11769-019-1081-8
    [7] BAO Le, MA Keming, XU Xiaowu, YU Xinxiao.  Foliar Particulate Matter Distribution in Urban Road System of Beijing, China . Chinese Geographical Science, 2019, 20(4): 591-600. doi: 10.1007/s11769-019-1057-8
    [8] SERASINGHE PATHIRANAGE Inoka Sandamali, Lakshmi N. KANTAKUMAR, SUNDARAMOORTHY Sivanantharajah.  Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning . Chinese Geographical Science, 2018, 28(2): 274-286. doi: 10.1007/s11769-018-0946-6
    [9] ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin.  Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data . Chinese Geographical Science, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8
    [10] CHEN Tan, DENG Shulin, GAO Yu, QU Lean, LI Manchun, CHEN Dong.  Characterization of Air Pollution in Urban Areas of Yangtze River Delta, China . Chinese Geographical Science, 2017, 27(5): 836-846. doi: 10.1007/s11769-017-0900-z
    [11] XU Xinliang, CAI Hongyan, QIAO Zhi, WANG Liang, JIN Cui, GE Yaning, WANG Luyao, XU Fengjiao.  Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images . Chinese Geographical Science, 2017, 27(5): 818-826. doi: 10.1007/s11769-017-0910-x
    [12] XUE Desheng, HUANG Gengzhi, GUAN Jingwen, LIN Jiarong.  Changing Concepts of City and Urban Planning Practices in Guangzhou (1949-2010):An Approach to Sustainable Urban Development . Chinese Geographical Science, 2014, 0(5): 607-619. doi: 10.1007/s11769-014-0711-4
    [13] DU Xile, LU Changhe, WANG Hairong, MA Jianhua.  Trends of Urban Air Pollution in Zhengzhou City in 1996–2008 . Chinese Geographical Science, 2012, 22(4): 402-413.
    [14] XIU Chunliang, CHENG Lin, SONG Wei, WU Wei.  Vulnerability of Large City and Its Implication in Urban Planning: A Perspective of Intra-urban Structure . Chinese Geographical Science, 2011, 21(2): 204-210.
    [15] ZHANG Qianggong, KANG Shichang, YAN Yuping.  Characteristics of Spatial and Temporal Variations of Monthly Mean Surface Air Temperature over Qinghai-Tibet Plateau . Chinese Geographical Science, 2006, 16(4): 351-358.
    [16] PENG Guangxiong, LI Jing, CHEN Yunhao, Abdul Patah NORIZAN, Liphong TAY.  High-resolution Surface Relative Humidity Computation Using MODIS Image in Peninsular Malaysia . Chinese Geographical Science, 2006, 16(3): 260-264.
    [17] Elnazir RAMADAN, FENG Xue-zhi.  URBAN PLANNING:A TOOL FOR URBAN POVERTY ALLEVIATION IN SUDAN . Chinese Geographical Science, 2004, 14(2): 110-116.
    [18] ZHANG Jing-xiang, WU Qi-yan, RUI Fu-hong.  EVOLUTION OF URBAN SYSTEM IN NEW ECONOMIC CIRCUMSTANCES AND PLANNING COUNTERMEASURES . Chinese Geographical Science, 2001, 11(2): 129-136.
    [19] 何隆华, 杨宏伟.  APPLICATION OF GIS IN ANALYZING ECOSYSTEM'S RELATIVE SENSITIVITY TO ACID DEPOSITION . Chinese Geographical Science, 1996, 6(4): 359-363.
    [20] 阎蓓, 何兴刚.  FACTORS AFFECTING FORMATION AND DEVELOPMENT OF THE URBAN INDUSTRIAL DISTRICT IN CHINA──A Case Study on Caohejing Hi-Tech Park in Shanghai . Chinese Geographical Science, 1996, 6(2): 104-111.
  • 加载中
计量
  • 文章访问数:  259
  • HTML全文浏览量:  11
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-03
  • 修回日期:  2019-09-26

Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China

doi: 10.1007/s11769-020-1097-0
    基金项目:

    Under the auspices of National Natural Science Foundation of China (No. 41871343), Major Project of National Natural Science Foundation of China (No. 41590842)

    Strategic Priority Research Program A of the Chinese Academy of Sciences (No. XDA23100201)

    通讯作者: KUANG Wenhui.E-mail:kuangwh@igsnrr.ac.cn

摘要: The cooling and humidifying effects of urban parks are an essential component of city ecosystems in terms of regulating microclimates or mitigating urban heat islands (UHIs). Air temperature and relative humidity are two main factors of thermal environmental comfort and have a critical impact on the urban environmental quality of human settlements. We measured the 2-m height air temperature and relative humidity at the Beijing Olympic Park and a nearby building roof for more than 1 year to elucidate seasonal variations in air temperature and relative humidity, as well as to investigate the outdoor thermal comfort. The results showed that the lawn of the park could, on average, reduce the air temperature by (0.80±0.19)℃, and increase the relative humidity by (5.24±2.91)% relative to the values measured at the building roof during daytime. During the nighttime, the lawn of the park reduced the air temperature by (2.64±0.64)℃ and increased the relative humidity by (10.77±5.20)%. The park was cooler and more humid than surrounding building area, especially in night period (more pronounced cooling with 1.84℃). Additionally, the lawn of the park could improve outdoor thermal comfort through its cooling and humidifying effects. The level of thermal comfort in the park was higher than that around the building roof for a total of 11 days annually in which it was above one or more thermal comfort levels (average reduced human comfort index of 0.92) except during the winter.

English Abstract

KUANG Wenhui. Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China[J]. 中国地理科学, 2020, 30(1): 75-88. doi: 10.1007/s11769-020-1097-0
引用本文: KUANG Wenhui. Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China[J]. 中国地理科学, 2020, 30(1): 75-88. doi: 10.1007/s11769-020-1097-0
KUANG Wenhui. Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China[J]. Chinese Geographical Science, 2020, 30(1): 75-88. doi: 10.1007/s11769-020-1097-0
Citation: KUANG Wenhui. Seasonal Variation in Air Temperature and Relative Humidity on Building Areas and in Green Spaces in Beijing, China[J]. Chinese Geographical Science, 2020, 30(1): 75-88. doi: 10.1007/s11769-020-1097-0
参考文献 (82)

目录

    /

    返回文章
    返回