留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models

TIAN Fuqiang HU Hongchang SUN Yu LI Hongyi LU Hui

TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. 中国地理科学, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5
引用本文: TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. 中国地理科学, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5
TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. Chinese Geographical Science, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5
Citation: TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. Chinese Geographical Science, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5

Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models

doi: 10.1007/s11769-019-1068-5
基金项目: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFC0402701), National Natural Science Foundation of China (No. 51825902)

Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models

Funds: 

Under the auspices of National Key Research and Development Program of China (No. 2016YFC0402701), National Natural Science Foundation of China (No. 51825902)

  • 摘要: In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches. In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable (e.g., streamflow). Thus hydrologists must turn to multi-objective calibration. In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes (i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds. The new objective function was applied to 196 model parameter estimation experiment (MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model. The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively. Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration. The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed.
  • [1] Bao H J, Zhao L N, He Y et al., 2011. Coupling ensemble weather predictions based on TIGGE database with Grid-Xinanjiang model for flood forecast. Advances in Geosciences, 29:61-67. doi: 10.5194/adgeo-29-61-2011
    [2] Bekele E G, Nicklow J W, 2007. Multi-objective automatic cali-bration of SWAT using NSGA-II. Journal of Hydrology, 341(3-4):165-176. doi: 10.1016/j.jhydrol.2007.05.014
    [3] Booij M J, Krol M S, 2010. Balance between calibration objectives in a conceptual hydrological model. Hydrological Sciences Journal, 55(6):1017-1032. doi: 10.1080/02626667.2010.505892
    [4] Box G E P, Cox D R, 1964. An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodo-logical), 26(2):211-252.
    [5] Boyle D P, Gupta H V, Sorooshian S, 2000. Toward improved calibration of hydrologic models:combining the strengths of manual and automatic methods. Water Resources Research, 36(12):3663-3674. doi: 10.1029/2000WR900207
    [6] Cheng C T, Zhao M Y, Chau K W et al., 2006. Using genetic al-gorithm and TOPSIS for Xinanjiang model calibration with a single procedure. Journal of Hydrology, 316(1-4):129-140. doi: 10.1016/j.jhydrol.2005.04.022
    [7] Deb K, Pratap A, Agarwal S et al., 2002. A fast and elitist multi-objective genetic algorithm:NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182-197. doi: 10.1109/4235.996017
    [8] Duan Q, Schaake J, Andréassian V et al., 2006. Model parameter estimation experiment (MOPEX):an overview of science strategy and major results from the second and third work-shops. Journal of Hydrology, 320(1-2):3-17. doi:10.1016/j. jhydrol.2005.07.031
    [9] Efstratiadis A, Koutsoyiannis D, 2010. One decade of multi-ob-jective calibration approaches in hydrological modelling:a re-view. Hydrological Sciences Journal, 55(1):58-78. doi: 10.1080/02626660903526292
    [10] Faustini J M, Kaufmann P R, Herlihy A T, 2009. Downstream variation in bankfull width of wadeable streams across the conterminous United States. Geomorphology, 108(3-4):292-311. doi: 10.1016/j.geomorph.2009.02.005
    [11] Fenicia F, Savenije H H G, Matgen P et al., 2007. A comparison of alternative multiobjective calibration strategies for hydrological modeling. Water Resources Research, 43(3):W03434. doi: 10.1029/2006WR005098
    [12] Gan T Y, Dlamini E M, Biftu G F, 1997. Effects of model com-plexity and structure, data quality, and objective functions on hydrologic modeling. Journal of Hydrology, 192(1-4):81-103. doi: 10.1016/S0022-1694(96)03114-9
    [13] Gill M K, Kaheil Y H, Khalil A et al., 2006. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resources Research, 42(7):W07417. doi:10.1029/2005 WR004528
    [14] Guinot V, Cappelaere B, Delenne C et al., 2011. Towards improved criteria for hydrological model calibration:theoretical analysis of distance-and weak form-based functions. Journal of Hydrology, 401(1-2):1-13. doi: 10.1016/j.jhydrol.2011.02.004
    [15] Gupta H V, Sorooshian S, Yapo P O, 1998. Toward improved calibration of hydrologic models:multiple and noncommen-surable measures of information. Water Resources Research, 34(4):751-763. doi: 10.1029/97WR03495
    [16] Gupta H V, Kling H, Yilmaz K K et al., 2009. Decomposition of the mean squared error and NSE performance criteria:impli-cations for improving hydrological modelling. Journal of Hy-drology, 377(1-2):80-91. doi: 10.1016/j.jhydrol.2009.08.003
    [17] Hall J W, Tarantola S, Bates P D et al., 2005. Distributed sensitiv-ity analysis of flood inundation model calibration. Journal of Hydraulic Engineering, 131(2):117-126. doi: 10.1061/(ASCE)0733-9429(2005)131:2(117)
    [18] Jain S K, Sudheer K P, 2008. Fitting of hydrologic models:a close look at the Nash-Sutcliffe index. Journal of Hydrologic Engineering, 13(10):981-986. doi: 10.1061/(ASCE)1084-0699(2008)13:10(981)
    [19] Ju Q, Yu Z B, Hao Z C et al., 2009. Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model. Neurocomputing, 72(13-15):2873-2883. doi:10.1016/j. neu-com.2008.12.032
    [20] Khu S T, Madsen H, di Pierro F, 2008. Incorporating multiple observations for distributed hydrologic model calibration:an approach using a multi-objective evolutionary algorithm and clustering. Advances in Water Resources, 31(10):1387-1398. doi: 10.1016/j.advwatres.2008.07.011
    [21] Kollat J B, Reed P M, 2006. Comparing state-of-the-art evolu-tionary multi-objective algorithms for long-term groundwater monitoring design. Advances in Water Resources, 29(6):792-807. doi: 10.1016/j.advwatres.2005.07.010
    [22] Kollat J B, Reed P M, Wagener T, 2012. When are multiobjective calibration trade-offs in hydrologic models meaningful? Water Resources Research, 48(3):03520. doi:10.1029/2011WR 011534
    [23] Krause P, Boyle D P, Bäse F, 2005. Comparison of different effi-ciency criteria for hydrological model assessment. Advances in Geosciences, 5:89-97. doi: 10.5194/adgeo-5-89-2005
    [24] Laumanns M, Thiele L, Deb K et al., 2002. Combining conver-gence and diversity in evolutionary multiobjective optimization. Evolutionary Computation, 10(3):263-282. doi: 10.1162/106365602760234108
    [25] Li H X, Zhang Y Q, Chiew F H S et al., 2009. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. Journal of Hydrology, 370(1-4):155-162. doi: 10.1016/j.jhydrol.2009.03.003
    [26] Li H Y, Wigmosta M S, Wu H et al., 2013. A physically based runoff routing model for land surface and earth system models. Journal of Hydrometeorology, 14(3):808-828. doi: 10.1175/JHM-D-12-015.1
    [27] Madsen H, 2000. Automatic calibration of a conceptual rain-fall-runoff model using multiple objectives. Journal of Hy-drology, 235(3-4):276-288. doi:10.1016/S0022-1694(00) 00279-1
    [28] Madsen H, Wilson G, Ammentorp H C 2002. Comparison of dif-ferent automated strategies for calibration of rainfall-runoff models. Journal of Hydrology, 261(1-4):48-59. doi: 10.1016/S0022-1694(01)00619-9
    [29] Madsen H, 2003. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Advances in Water Resources, 26(2):205-216. doi: 10.1016/S0309-1708(02)00092-1
    [30] Matott L S, Babendreier J E, Purucker S T, 2009. Evaluating un-certainty in integrated environmental models:a review of concepts and tools. Water Resources Research, 45(6):W06421. doi: 10.1029/2008WR007301
    [31] McCuen R H, Knight Z, Cutter A G, 2006. Evaluation of the Nash-Sutcliffe efficiency index. Journal of Hydrologic Engi-neering, 11(6):597-602. doi:10.1061/(ASCE)1084-0699 (2006)11:6(597)
    [32] Muleta M K, 2012. Model performance sensitivity to objective function during automated calibrations. Journal of Hydrologic Engineering, 17(6):756-767. doi: 10.1061/(ASCE)HE.1943-5584.0000497
    [33] Nash J E, Sutcliffe J V, 1970. River flow forecasting through conceptual models part I-A discussion of principles. Journal of Hydrology, 10(3):282-290. doi:10.1016/0022-1694(70) 90255-6
    [34] Pokhrel P, Gupta H V, 2010. On the use of spatial regularization strategies to improve calibration of distributed watershed models. Water Resources Research, 46(1):W01505. doi: 10.1029/2009WR008066
    [35] Price K, Purucker S T, Kraemer S R et al., 2012. Tradeoffs among watershed model calibration targets for parameter estimation. Water Resources Research, 48(10):W10542. doi: 10.1029/2012WR012005
    [36] Reed P, Minsker B S, Goldberg D E, 2003. Simplifying multi-objective optimization:an automated design methodology for the nondominated sorted genetic algorithm-II. Water Resources Research, 39(7):1196. doi: 10.1029/2002WR001483
    [37] Schaefli B, Gupta H V, 2007. Do Nash values have value? Hy-drological Processes, 21(15):2075-2080. doi:10.1002/hyp. 6825
    [38] Sun Y, Tian F Q, Yang L et al., 2014. Exploring the spatial varia-bility of contributions from climate variation and change in catchment properties to streamflow decrease in a mesoscale basin by three different methods. Journal of Hydrology, 508:170-180. doi: 10.1016/j.jhydrol.2013.11.004
    [39] Tang Y, Reed P, Wagener T, 2006. How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrology and Earth System Sciences, 10(2):289-307. doi: 10.5194/hess-10-289-2006
    [40] Tang Y, Reed P M, Kollat J B, 2007. Parallelization strategies for rapid and robust evolutionary multiobjective optimization in water resources applications. Advances in Water Resources, 30(3):335-353. doi: 10.1016/j.advwatres.2006.06.006
    [41] Tekleab S, Uhlenbrook S, Mohamed Y et al., 2011. Water balance modeling of Upper Blue Nile catchments using a top-down approach. Hydrology and Earth System Sciences, 15(7):2179-2193. doi: 10.5194/hess-15-2179-2011
    [42] van Griensven A, Bauwens W, 2003. Multiobjective autocalibra-tion for semidistributed water quality models. Water Resources Research, 39(12):1348. doi: 10.1029/2003WR002284
    [43] van Werkhoven K, Wagener T, Reed P et al., 2009. Sensitivi-ty-guided reduction of parametric dimensionality for mul-ti-objective calibration of watershed models. Advances in Water Resources, 32(8):1154-1169. doi:10.1016/j.advwatres. 2009.03.002
    [44] Vrugt J A, Bouten W, Gupta H V et al., 2002. Toward improved identifiability of hydrologic model parameters:the information content of experimental data. Water Resources Research, 38(12):1312. doi: 10.1029/2001WR001118
    [45] Vrugt J A, Gupta H V, Bastidas L A et al., 2003. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8):1214-1232. doi: 10.1029/2002WR001746
    [46] Wagener T, 2003. Evaluation of catchment models. Hydrological Processes, 17(16):3375-3378. doi: 10.1002/hyp.5158
    [47] Yapo P O, Gupta H V, Sorooshian S, 1998. Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204(1-4):83-97. doi: 10.1016/S0022-1694(97)00107-8
    [48] Zhao R J, 1992. The Xinanjiang model applied in China. Journal of Hydrology, 135(1-4):371-381. doi:10.1016/0022-1694 (92)90096-E
  • [1] Junhong CHEN, Lihua ZHANG, Peipei CHEN, Yongming MA.  Application of Spatially Distributed Calibrated Hydrological Model in Evapotranspiration Simulation of Three Gorges Reservoir Area of China: A Case Study in the Madu River Basin . Chinese Geographical Science, 2022, 32(6): 1083-1098. doi: 10.1007/s11769-022-1318-9
    [2] Liupeng JIANG, Jinghai ZHU, Wei CHEN, Yuanman HU, Jing YAO, Shuai YU, Guangliang JIA, Xingyuan HE, Anzhi WANG.  Identification of Suitable Hydrologic Response Unit Thresholds for Soil and Water Assessment Tool Streamflow Modelling . Chinese Geographical Science, 2021, 31(4): 696-710. doi: 10.1007/s11769-021-1218-4
    [3] DU Jinkang, ZHENG Dapeng, XU Youpeng, HU Shunfu, XU Chongyu.  Evaluating Functions of Reservoirs' Storage Capacities and Locations on Daily Peak Attenuation for Ganjiang River Basin Using Xinanjiang Model . Chinese Geographical Science, 2016, 26(6): 789-802. doi: 10.1007/s11769-016-0838-6
    [4] LI Xianghu, ZHANG Qi, YE Xuchun.  Effects of Spatial Information of Soil Physical Properties on Hydrological Modeling Based on a Distributed Hydrological Model . Chinese Geographical Science, 2013, 23(2): 182-193.
    [5] YU Fan, LI Haitao, GU Haiyan, HAN Yanshun.  Assimilating ASAR Data for Estimating Soil Moisture Profile Using an En-semble Kalman Filter . Chinese Geographical Science, 2013, 23(6): 666-679. doi: 10.1007/s11769-013-0623-8
    [6] WANG Hongrui, GAO Yuanyuan, LIU Qiong, SONG Jinxi.  Land Use Allocation Based on Interval Multi-objective Linear Programming Model: A Case Study of Pi County in Sichuan Province . Chinese Geographical Science, 2010, 20(2): 176-183. doi: 10.1007/s11769-010-0176-z
    [7] LU Dadao.  Objective and Framework for Territorial Development in China . Chinese Geographical Science, 2009, 19(3): 195-202. doi: 10.1007/s11769-009-0195-9
    [8] MO Jiaqi, LIN Wantao, WANG Hui.  Singularly Perturbed Solution of Coupled Model in Atmosphere-ocean for Global Climate . Chinese Geographical Science, 2008, 18(2): 193-196. doi: 10.1007/s11769-008-0193-3
    [9] JIA Yuanyuan, LI Zhaoliang.  Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region . Chinese Geographical Science, 2008, 18(2): 171-177. doi: 10.1007/s11769-008-0171-9
    [10] CHEN Xuegang, YANG Zhaoping, LIU Xuling.  Empirical Analysis of Xinjiang's Bilateral Trade: Gravity Model Approach . Chinese Geographical Science, 2008, 18(1): 9-16. doi: 10.1007/s11769-008-0009-5
    [11] LI Xianghu, REN Liliang.  Effect of Temporal Resolution of NDVI on Potential Evapotranspiration Estimation and Hydrological Model Performance . Chinese Geographical Science, 2007, 17(4): 357-363. doi: 10.1007/s11769-007-0363-6
    [12] YAN Hao-wen, LI Zhi-lin, AI Ting-hua.  SYSTEM FOR AUTOMATIC GENERALIZATION OF TOPOGRAPHIC MAPS . Chinese Geographical Science, 2006, 16(2): 165-170.
    [13] LI Ruzhong.  Multi-agent Blind Model and Its Application to Regional Eco-environmental Quality Assessment . Chinese Geographical Science, 2006, 16(3): 249-254.
    [14] MENG Guang-wen.  EVOLUTIONARY MODEL OF FREE ECONOMIC ZONES——Different Generations and Structural Features . Chinese Geographical Science, 2005, 15(2): 103-112.
    [15] WU Kai-ya, HU Shu-heng, SUN Shi-qun.  APPLICATION OF FUZZY OPTIMIZATION MODEL IN ECOLOGICAL SECURITY PRE-WARNING . Chinese Geographical Science, 2005, 15(1): 29-33.
    [16] YU Ya-juan, GUO Huai-cheng, LIU Yong, WANG Shu-tong, WANG Jin-feng.  FUZZY COMPREHENSIVE EVALUATION MODEL OF ECOLOGICAL DEMONSTRATION AREA . Chinese Geographical Science, 2005, 15(4): 303-308.
    [17] ZHANG Xue-song, HAO Fang-hua, CHENG Hong-guang, LI Dao-feng.  APPLICATION OF SWAT MODEL IN THE UPSTREAM WATERSHED OF THE LUOHE RIVER . Chinese Geographical Science, 2003, 13(4): 334-339.
    [18] FU Qiang, LU Tie-guang, FU Hong.  APPLYING PPE MODEL BASED ON RAGA TO CLASSIFY AND EVALUATE SOIL GRADE . Chinese Geographical Science, 2002, 12(2): 136-141.
    [19] ZHANG Shu-qing, ZHANG Shi-kui, ZHANG Jun-yan.  A STUDY ON WETLAND CLASSIFICATION MODEL OF REMOTE SENSING IN THE SANGJIANG PLAIN . Chinese Geographical Science, 2000, 10(1): 68-73.
    [20] 刘兆礼, 黄铁青, 万恩璞, 张养贞.  STUDY ON MODEL FOR REMOTE SENSING ESTIMATION OF MAIZE YIELD . Chinese Geographical Science, 1998, 8(2): 161-167.
  • 加载中
计量
  • 文章访问数:  204
  • HTML全文浏览量:  6
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-14
  • 刊出日期:  2019-12-01

Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models

doi: 10.1007/s11769-019-1068-5
    基金项目:

    Under the auspices of National Key Research and Development Program of China (No. 2016YFC0402701), National Natural Science Foundation of China (No. 51825902)

摘要: In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single-or multi-objective functions when utilizing automatic calibration approaches. In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable (e.g., streamflow). Thus hydrologists must turn to multi-objective calibration. In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes (i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds. The new objective function was applied to 196 model parameter estimation experiment (MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model. The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively. Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration. The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed.

English Abstract

TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. 中国地理科学, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5
引用本文: TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. 中国地理科学, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5
TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. Chinese Geographical Science, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5
Citation: TIAN Fuqiang, HU Hongchang, SUN Yu, LI Hongyi, LU Hui. Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models[J]. Chinese Geographical Science, 2019, 29(6): 934-948. doi: 10.1007/s11769-019-1068-5
参考文献 (48)

目录

    /

    返回文章
    返回