留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale

LIU Yangyang YANG Yue WANG Qian KHALIFA Muhammad ZHANG Zhaoying TONG Linjing LI Jianlong SHI Aiping

LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. 中国地理科学, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
引用本文: LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. 中国地理科学, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. Chinese Geographical Science, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
Citation: LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. Chinese Geographical Science, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x

Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale

doi: 10.1007/s11769-019-1063-x
基金项目: Under the auspices of Asia Pacific Network for Global Change Research (APN), Global Change Fund Project (No. ARCP2015-03CMY-Li), National Natural Science Foundation of China (No. 41271361, 41501575), National Key Research and De-velopment Project (No. 2018YFD0800201), Key Project of Chinese National Programs for Fundamental Research and Development (No. 2010CB950702)
详细信息
    通讯作者:

    LI Jianlong.E-mail:jlli2008@nju.edu.cn;SHI Aiping,shap@ujs.edu.cn

Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale

Funds: Under the auspices of Asia Pacific Network for Global Change Research (APN), Global Change Fund Project (No. ARCP2015-03CMY-Li), National Natural Science Foundation of China (No. 41271361, 41501575), National Key Research and De-velopment Project (No. 2018YFD0800201), Key Project of Chinese National Programs for Fundamental Research and Development (No. 2010CB950702)
More Information
    Corresponding author: LI Jianlong.E-mail:jlli2008@nju.edu.cn;SHI Aiping,shap@ujs.edu.cn
  • 摘要: Understanding the net primary productivity (NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach (CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia (1737.23×104 km2), while the grassland area in Europe was relatively small (202.83×104 km2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas (560.10 g C/(m2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation (AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.
  • [1] Alexandrov G A, Oikawa T, Esser G, 1999. Estimating terrestrial NPP:what the data say and how they may be interpreted? Ecological Modelling, 117(2-3):361-369. doi: 10.1016/s0304-3800(99)00019-8
    [2] Barford C C, Wofsy S C, Goulden M L et al., 2001. Factors con-trolling long-and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294(5547):1688-1691. doi: 10.1126/science.1062962
    [3] Beer C, Reichstein M, Tomelleri E et al., 2010. Terrestrial gross carbon dioxide uptake:global distribution and covariation with climate. Science, 329(5993):834-838. doi:10.1126/science. 1184984
    [4] Bolin B, 1977. Changes of land biota and their importance for the carbon cycle. Science, 196(4290):613-615. doi: 10.1126/science.196.4290.613
    [5] Chen L Y, Li H, Zhang P J et al., 2015. Climate and native grass-land vegetation as drivers of the community structures of shrub-encroached grasslands in Inner Mongolia, China. Land-scape Ecology, 30(9):1627-1641. doi: 10.1007/s10980-014-0044-9
    [6] Chen T, van der Werf G R, de Jeu R A M et al., 2013. A global analysis of the impact of drought on net primary productivity. Hydrology and Earth System Sciences, 17(10):3885-3894. doi: 10.5194/hessd-10-2429-2013
    [7] Chen Y Z, Mu S J, Sun Z G et al., 2016. Grassland carbon se-questration ability in China:a new perspective from terrestrial aridity zones. Rangeland Ecology & Management, 69(1):84-94. doi: 10.1016/j.rama.2015.09.003
    [8] Chen Y Z, Li J L, Ju W M et al., 2017. Quantitative assessments of water-use efficiency in Temperate Eurasian Steppe along an aridity gradient. PLoS One, 12(7):e0179875. doi: 10.1371/journal.pone.0179875
    [9] Chen Zhenghua, Ma Qingyuan, Wang Jian et al., 2008. Estimation of Heihe Basin net primary productivity using the CASA model. Journal of Natural Resources, 23(4):263-273. (in Chinese)
    [10] DeLucia E H, Drake J E, Thomas R B et al., 2007. Forest carbon use efficiency:is respiration a constant fraction of gross primary production? Global Change Biology, 13(6):1157-1167. doi: 10.1111/j.1365-2486.2007.01365.x
    [11] Dong J R, Kaufmann R K, Myneni R B et al., 2003. Remote sensing estimates of boreal and temperate forest woody bio-mass:carbon pools, sources, and sinks. Remote Sensing of En-vironment, 84(3):393-410. doi:10.1016/s0034-4257(02) 00130-x
    [12] Field C B, Randerson J T, Malmström C M, 1995. Global net primary production:combining ecology and remote sensing. Remote Sensing of Environment, 51(1):74-88. doi: 10.1016/0034-4257(94)00066-v
    [13] Gang C, Zhou W, Wang Z et al., 2015. Comparative assessment of grassland NPP dynamics in response to climate change in China, North America, Europe and Australia from 1981 to 2010. Journal of Agronomy and Crop Science, 201(1):57-68. doi: 10.1111/jac.12088
    [14] Gang C, Wang Z, Zhou W et al., 2016b. Assessing the spatiotem-poral dynamic of global grassland water use efficiency in re-sponse to climate change from 2000 to 2013. Journal of Agronomy and Crop Science, 202(5):343-354. doi: 10.1111/jac.12137
    [15] Gang C C, Wang Z Q, Chen Y Z et al., 2016a. Drought-induced dynamics of carbon and water use efficiency of global grass-lands from 2000 to 2011. Ecological Indicators, 67:788-797. doi: 10.1016/j.ecolind.2016.03.049
    [16] Gang C C, Zhao W, Zhao T et al., 2018. The impacts of land conversion and management measures on the grassland net primary productivity over the Loess Plateau, Northern China. Science of the Total Environment, 645:827-836. doi: 10.1016/j.scitotenv.2018.07.161
    [17] Gao Q Z, Schwartz M W, Zhu W Q et al., 2016. Changes in global grassland productivity during 1982 to 2011 attributable to climatic factors. Remote Sensing, 8(5):384. doi: 10.3390/rs8050384
    [18] Grace J, José J S, Meir P et al., 2006. Productivity and carbon fluxes of tropical savannas. Journal of Biogeography, 33(3):387-400. doi: 10.1111/j.1365-2699.2005.01448.x
    [19] Hicke J A, Asner G P, Randerson J T et al., 2002. Trends in North American net primary productivity derived from satellite ob-servations, 1982-1998. Global Biogeochemical Cycles, 16(2):2-1-2-14. doi: 10.1029/2001gb001550
    [20] Hilker T, Lyapustin A I, Tucker C J et al., 2014. Vegetation dynam-ics and rainfall sensitivity of the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 111(45):16041-16046. doi: 10.1073/pnas.1404870111
    [21] Joos F, Prentice I C, Sitch S et al., 2001. Global warming feed-backs on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios. Global Biogeochemical Cycles, 15(4):891-907. doi: 10.1029/2000gb001375
    [22] Keenan T F, Baker I, Barr A et al., 2012. Terrestrial biosphere model performance for inter-annual variability of land-atmosphere CO2 exchange. Global Change Biology, 18(6):1971-1987. doi: 10.1111/j.1365-2486.2012.02678.x
    [23] Khalifa M, Elagib N A, Ribbe L et al., 2018. Spatio-temporal variations in climate, primary productivity and efficiency of water and carbon use of the land cover types in Sudan and Ethiopia. Science of the Total Environment, 624:790-806. doi: 10.1016/j.scitotenv.2017.12.090
    [24] Knutson T R, Delworth T L, Dixon K W et al., 1999. Model as-sessment of regional surface temperature trends (1949-1997). Journal of Geophysical Research:Atmospheres, 104(D24):30981-30996. doi: 10.1029/1999jd900965
    [25] Liang W, Yang Y T, Fan D M et al., 2015. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agricultural and Forest Meteorology, 204:22-36. doi:10.1016/j.agrformet.2015.01. 015
    [26] Lieth H, 1975. Modeling the primary productivity of the world. In:Lieth H, Whittaker R H (eds). Primary Productivity of the Biosphere. Berlin, Heidelberg:Springer, 237-263. doi: 10.1007/978-3-642-80913-2_12
    [27] Lin X H, Han P F, Zhang W et al., 2017. Sensitivity of alpine grassland carbon balance to interannual variability in climate and atmospheric CO2 on the Tibetan Plateau during the last century. Global and Planetary Change, 154:23-32. doi: 10.1016/j.gloplacha.2017.05.008
    [28] Ling H, He B, Chen A F et al., 2016. Drought dominates the in-terannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific Reports, 6:24639. doi: 10.1038/srep24639
    [29] Liu J, Chen J M, Cihlar J et al., 2002. Net primary productivity mapped for Canada at 1-km resolution. Global Ecology and Biogeography, 11(2):115-129. doi:10.1046/j.1466-822x. 2002.00278.x
    [30] Liu Y Y, Wang Q, Zhang Z Y et al., 2019a. Grassland dynamics in responses to climate variation and human activities in China from 2000 to 2013. Science of the Total Environment, 690:27-39. doi: 10.1016/j.scitotenv.2019.06.503
    [31] Liu Y Y, Yang Y, Wang Q et al., 2019b. Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient. Science of the Total Environment, 652:671-682. doi: 10.1016/j.scitotenv.2018.10.295
    [32] Liu Y Y, Zhang Z Y, Tong L J et al., 2019c. Assessing the effects of climate variation and human activities on grassland degra-dation and restoration across the globe. Ecological Indicators, 106:105504. doi: 10.1016/j.ecolind.2019.105504
    [33] Mao D H, Wang Z M, Li L et al., 2014. Spatiotemporal dynamics of grassland aboveground net primary productivity and its as-sociation with climatic pattern and changes in Northern China. Ecological Indicators, 41:40-48. doi:10.1016/j.ecolind.2014. 01.020
    [34] Melillo J M, McGuire A D, Kicklighter D W et al., 1993. Global climate change and terrestrial net primary production. Nature, 363(6426):234-240. doi: 10.1038/363234a0
    [35] Nemani R R, Keeling C D, Hashimoto H et al., 2003. Cli-mate-driven increases in global terrestrial net primary produc-tion from 1982 to 1999. Science, 300(5625):1560-1563. doi: 10.1126/science.1082750
    [36] Potter C, Klooster S, Genovese V, 2012. Net primary production of terrestrial ecosystems from 2000 to 2009. Climatic Change, 115(2):365-378. doi: 10.1007/s10584-012-0460-2
    [37] Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial eco-system production:a process model based on global satellite and surface data. Global Biogeochem. Cycles, 7:811-841.
    [38] Raich J W, Rastetter E B, Melillo J M et al., 1991. Potential net primary productivity in South America:application of a global model. Ecological Applications, 1(4):399-429. doi: 10.2307/1941899
    [39] Schimel D S, House J I, Hibbard K A et al., 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414(6860):169-172. doi: 10.1038/35102500
    [40] Scurlock J M O, Johnson K, Olson R J, 2002. Estimating net primary productivity from grassland biomass dynamics meas-urements. Global Change Biology, 8(8):736-753. doi: 10.1046/j.1365-2486.2002.00512.x
    [41] Toms J D, Lesperance M L, 2003. Piecewise regression:a tool for identifying ecological thresholds. Ecology, 84(8):2034-2041. doi: 10.1890/02-0472
    [42] Uchijima Z, Seino H, 1985. Agroclimatic Evaluation of net primary productivity of natural vegetations:(1) chikugo model for eval-uating net primary productivity. Journal of Agricultural Meteor-ology, 40(4):343-352. doi: 10.2480/agrmet.40.343
    [43] Xia J Z, Liu S G, Liang S L et al., 2014. Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006. Remote Sensing, 6(3):1783-1802. doi: 10.3390/rs6031783
    [44] Xing Xiaoxu, Xu Xingliang, Zhang Xianzhou et al., 2010. Simu-lating net primary production of grasslands in northeastern Asia using MODIS data from 2000 to 2005. Journal of Geo-graphical Sciences, 20(2):193-204. doi: 10.1007/s11442-010-0193-y
    [45] Xu H J, Wang X P, Zhang X X, 2016. Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecological Engineering, 92:251-259. doi: 10.1016/j.ecoleng.2016.04.005
    [46] Yang Y, Wang Z Q, Li J L et al., 2017. Assessing the spatiotem-poral dynamic of global grassland carbon use efficiency in re-sponse to climate change from 2000 to 2013. Acta Oecologica, 81:22-31. doi: 10.1016/j.actao.2017.04.004
    [47] Yang Y H, Fang J Y, Ma W H et al., 2008. Relationship between variability in aboveground net primary production and precip-itation in global grasslands. Geophysical Research Letters, 35(23):L23710. doi: 10.1029/2008gl035408
    [48] Zeng B, Yang T B, 2008. Impacts of climate warming on vegeta-tion in Qaidam Area from 1990 to 2003. Environmental Mon-itoring and Assessment, 144(1-3):403-417. doi: 10.1007/s10661-007-0003-x
    [49] Zhang Y, Zhang C B, Wang Z Q et al., 2016. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Science of the Total Environment, 563-564:210-220. doi: 10.1016/j.scitotenv.2016.03.223
    [50] Zhao M S, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994):940-943. doi:10.1126/science. 1192666
    [51] Zheng Zhong, Qi Yuan, Pan Xiaoduo et al., 2013. Estimating the grassland NPP in Qinghai Lake Basin based on WRF model data and CASA model. Journal of Glaciology and Geocryolo-gy, 35(2):465-474. (in Chinese)
    [52] Zhou W, Yang H, Huang L et al., 2017. Grassland degradation remote sensing monitoring and driving factors quantitative as-sessment in China from 1982 to 2010. Ecological Indicators, 83:303-313. doi: 10.1016/j.ecolind.2017.08.019
    [53] Zhou W, Yang H, Zhou L et al., 2018. Dynamics of grassland carbon sequestration and its coupling relation with hydrothermal factor of Inner Mongolia. Ecological Indicators, 95:1-11. doi: 10.1016/j.ecolind.2018.07.008
  • [1] Tian YAO, Qiang ZHAO, Chuanhao WU, Xiaonong HU, Chuan’an XIA, Xuan WANG, Guoqiang SANG, Jian LIU, Haijun WANG.  Spatio-temporal Variation Characteristics of Extreme Climate Events and Their Teleconnections to Large-scale Ocean-atmospheric Circulation Patterns in Huaihe River Basin, China During 1959–2019 . Chinese Geographical Science, 2024, 34(1): 118-134. doi: 10.1007/s11769-023-1398-1
    [2] Lun BAO, Lingxue YU, Ying LI, Fengqin YAN, Vincent LYNE, Chunying REN.  Climate Change Impacts on Agroecosystems in China: Processes, Mechanisms and Prospects . Chinese Geographical Science, 2023, 33(4): 583-600. doi: 10.1007/s11769-023-1362-0
    [3] Tingting ZHANG, Xianguo LYU, Yuanchun ZOU, Jiping LIU, Ming JIANG, Chunguang XU, Cuicui ZHOU, Chen XU, Zhenshan XUE.  Value Assessment of Wetland Ecosystem Services in the Da Hinggan Mountains, China . Chinese Geographical Science, 2022, 32(2): 302-311. doi: 10.1007/s11769-022-1268-2
    [4] Wenpeng DU, Huimin YAN, Zhiming FENG, Chao ZHANG, Yanzhao YANG.  Spatio-temporal Pattern of Ecosystem Pressure in Countries Along the Belt and Road: Combining Remote Sensing Data and Statistical Data . Chinese Geographical Science, 2022, 32(5): 745-758. doi: 10.1007/s11769-022-1298-9
    [5] Liang LIU, Jingyun GUAN, Wanqiang HAN, Xifeng JU, Chen MU, Jianghua ZHENG.  Quantitative Assessment of the Relative Contributions of Climate and Human Factors to Net Primary Productivity in the Ili River Basin of China and Kazakhstan . Chinese Geographical Science, 2022, 32(6): 1069-1082. doi: 10.1007/s11769-022-1311-3
    [6] LIU Yunda, TONG Lianjun.  Spatio-temporal Pattern and Driving Forces of Comprehensive Agricultural Productivity in Jilin Province, China . Chinese Geographical Science, 2020, 30(3): 493-504. doi: 10.1007/s11769-020-1123-2
    [7] YU Shan, JIANG Li, DU Wala, ZHAO Jianjun, ZHANG Hongyan, ZHANG Qiaofeng, LIU Huijuan.  Estimation and Spatio-temporal Patterns of Carbon Emissions from Grassland Fires in Inner Mongolia, China . Chinese Geographical Science, 2020, 30(4): 572-587. doi: 10.1007/s11769-020-1134-z
    [8] WU Mengquan, JIA Lili, XING Qianguo, SONG Xiaodong.  Spatio-temporal Variation of Arctic Sea Ice in Summer from 2003 to 2013 . Chinese Geographical Science, 2018, 28(1): 38-46. doi: 10.1007/s11769-017-0929-z
    [9] ZENG Xinhua, SONG Yigang, ZHANG Wanjun, HE Shengbing.  Spatio-temporal Variation of Soil Respiration and Its Driving Factors in Semi-arid Regions of North China . Chinese Geographical Science, 2018, 28(1): 12-24. doi: 10.1007/s11769-017-0899-1
    [10] ZHOU Lei, WANG Shaoqiang, CHI Yonggang, WANG Junbang.  Drought Impacts on Vegetation Indices and Productivity of Terrestrial Ecosystems in Southwestern China During 2001-2012 . Chinese Geographical Science, 2018, 28(5): 784-796. doi: 10.1007/s11769-018-0967-1
    [11] CHEN Tiantian, PENG Li, LIU Shaoquan, WANG Qiang.  Spatio-temporal Pattern of Net Primary Productivity in Hengduan Mountains area, China:Impacts of Climate Change and Human Activities . Chinese Geographical Science, 2017, 27(6): 948-962. doi: 10.1007/s11769-017-0895-5
    [12] CHENG Yeqing, WANG Ying, WANG Zheye, DU Na, SUN Yu, ZHAO Zhizhong.  Spatio-temporal Dynamic of Quality of Life of Residents, Northeast China . Chinese Geographical Science, 2016, 26(5): 623-637. doi: 10.1007/s11769-016-0827-9
    [13] JIANG Ling, XIAO Yi, ZHENG Hua, OUYANG Zhiyun.  Spatio-temporal Variation of Wind Erosion in Inner Mongolia of China Between 2001 and 2010 . Chinese Geographical Science, 2016, 26(2): 155-164. doi: 10.1007/s11769-016-0797-y
    [14] HUANG Farong, MO Xingguo, LIN Zhonghui, HU Shi.  Dynamics and Responses of Vegetation to Climatic Variations in Ziya-Daqing Basins, China Daqing Basins, China . Chinese Geographical Science, 2016, 26(4): 478-494. doi: 10.1007/s11769-016-0807-0
    [15] SUN Binfeng, ZHAO Hong, WANG Xiaoke.  Effects of Drought on Net Primary Productivity: Roles of Temperature, Drought Intensity, and Duration . Chinese Geographical Science, 2016, 26(2): 270-282. doi: 10.1007/s11769-016-0804-3
    [16] WANG Hao, LIU Guohua, LI Zongshan, YE Xin, WANG Meng, GONG Li.  Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China . Chinese Geographical Science, 2016, 26(1): 35-47. doi: 10.1007/s11769-015-0762-1
    [17] MAO Dehua, WANG Zongming, WU Changshan, SONG Kaishan, REN Chunying.  Examining Forest Net Primary Productivity Dynamics and Driving Forces in Northeastern China During 1982-2010 . Chinese Geographical Science, 2014, 0(6): 631-646. doi: 10.1007/s11769-014-0662-9
    [18] HUANG Yixiong, YIN Xiuqin, YIN Xiuqin et al..  Spatio-temporal Variation of Landscape Heterogeneity under Influence of Human Activities in Xiamen City of China in Recent Decade . Chinese Geographical Science, 2013, 23(2): 227-236.
    [19] ZHAO Junfang YAN Xiaodong JIA Gensuo.  Simulating the net carbon budget of forest ecosystems and its response to climate change in Northeast China using the improved forest carbon budget model FORCCHN . Chinese Geographical Science, 2012, 22(1): 29-41.
    [20] KANG Guo-ding, CAI Zu-cong, ZHANG Zi-heng, XIAO Peng-feng.  ESTIMATE OF METHANE EMISSIONS FROM RICE FIELDS IN CHINA BY CLIMATE-BASED NET PRIMARY PRODUCTIVITY . Chinese Geographical Science, 2004, 14(4): 326-331.
  • 加载中
计量
  • 文章访问数:  575
  • HTML全文浏览量:  13
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-26
  • 修回日期:  2018-11-18
  • 刊出日期:  2019-10-01

Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale

doi: 10.1007/s11769-019-1063-x
    基金项目:  Under the auspices of Asia Pacific Network for Global Change Research (APN), Global Change Fund Project (No. ARCP2015-03CMY-Li), National Natural Science Foundation of China (No. 41271361, 41501575), National Key Research and De-velopment Project (No. 2018YFD0800201), Key Project of Chinese National Programs for Fundamental Research and Development (No. 2010CB950702)
    通讯作者: LI Jianlong.E-mail:jlli2008@nju.edu.cn;SHI Aiping,shap@ujs.edu.cn

摘要: Understanding the net primary productivity (NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach (CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia (1737.23×104 km2), while the grassland area in Europe was relatively small (202.83×104 km2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas (560.10 g C/(m2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation (AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature.

English Abstract

LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. 中国地理科学, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
引用本文: LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. 中国地理科学, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. Chinese Geographical Science, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
Citation: LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping. Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale[J]. Chinese Geographical Science, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
参考文献 (53)

目录

    /

    返回文章
    返回