留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia

LI Jian CHEN Shengbo QIN Wenhan Mike MUREFU WANG Yufei YU Yan ZHEN Zhijun

LI Jian, CHEN Shengbo, QIN Wenhan, Mike MUREFU, WANG Yufei, YU Yan, ZHEN Zhijun. Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia[J]. 中国地理科学, 2019, 20(4): 679-688. doi: 10.1007/s11769-019-1052-0
引用本文: LI Jian, CHEN Shengbo, QIN Wenhan, Mike MUREFU, WANG Yufei, YU Yan, ZHEN Zhijun. Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia[J]. 中国地理科学, 2019, 20(4): 679-688. doi: 10.1007/s11769-019-1052-0
LI Jian, CHEN Shengbo, QIN Wenhan, Mike MUREFU, WANG Yufei, YU Yan, ZHEN Zhijun. Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia[J]. Chinese Geographical Science, 2019, 20(4): 679-688. doi: 10.1007/s11769-019-1052-0
Citation: LI Jian, CHEN Shengbo, QIN Wenhan, Mike MUREFU, WANG Yufei, YU Yan, ZHEN Zhijun. Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia[J]. Chinese Geographical Science, 2019, 20(4): 679-688. doi: 10.1007/s11769-019-1052-0

Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia

doi: 10.1007/s11769-019-1052-0
基金项目: Under the auspices the Fundamental Research Funds for the Central Universities, China (No. 2017TD-26), the Plan for Changbai Mountain Scholars of Jilin Province, China (No. JJLZ[2015]54)
详细信息
    通讯作者:

    CHEN Shengbo.E-mail:chensb@jlu.edu.cn

Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia

Funds: Under the auspices the Fundamental Research Funds for the Central Universities, China (No. 2017TD-26), the Plan for Changbai Mountain Scholars of Jilin Province, China (No. JJLZ[2015]54)
More Information
    Corresponding author: CHEN Shengbo.E-mail:chensb@jlu.edu.cn
  • 摘要: The Multi-angle imaging spectroradiometer (MISR) land-surface (LS) bidirectional reflectance factor (BRF) product (MILS_BRF) has unique semi-simultaneous multi-angle sampling and global coverage. However, unlike on-satellite observations, the spatio-temporal characteristics of MILS_BRF data have rarely been explicitly and comprehensively analysed. Results from 5-yr (2011-2015) of MILS_BRF dataset from a typical region in central Northeast Asia as the study area showed that the monthly area coverage as well as MILS_BRF data quantity varies significantly, from the highest in October (99.05%) through median in June/July (78.09%/75.21%) to lowest in January (18.97%), and a large data-vacant area exists in the study area during four consecutive winter months (December through March). The data-vacant area is mainly composed of crop lands and cropland/natural vegetation mosaic. The amount of data within the principal plane (PP) ±30° (nPP) or cross PP ±30° (nCP), varies intra-annually with significant differences from different view zeniths or forward/backward scattering directions. For example, multiple off-nadir cameras have nPP but no nCP data for up to six months (September through February), with the opposite occurring in June and July. This study provides explicit and comprehensive information about the spatio-temporal characteristics of product coverage and observation geometry of MILS_BRF in the study area. Results provide required user reference information for MILS_BRF to evaluate performance of BRDF models or to compare with other satellite-derived BRF or albedo products. Comparing this final product to on-satellite observations, what was found here reveals a new perspective on product spatial coverage and observation geometry for multi-angle remote sensing.
  • [1] Abdou W A, Pilorz S H, Helmlinger M C et al., 2006. Sua Pan surface bidirectional reflectance:a case study to evaluate the effect of atmospheric correction on the surface products of the Multi-angle Imaging SpectroRadiometer (MISR) during SAFARI 2000. IEEE Transactions on Geoscience and Remote Sensing, 44(7):1699-1706. doi: 10.1109/TGRS.2006.876031
    [2] Angal A, Xiong X X, Wu A S, 2017. Monitoring the on-orbit calibration of terra MODIS reflective solar bands using simul-taneous terra MISR observations. IEEE Transactions on Geo-science and Remote Sensing, 55(3):1648-1659. doi: 10.1109/TGRS.2016.2628704
    [3] Armston J D, Scarth P F, Phinn S R et al., 2007. Analysis of mul-ti-date MISR measurements for forest and woodland commu-nities, Queensland, Australia. Remote Sensing of Environment, 107(1-2):287-298. doi: 10.1016/j.rse.2006.11.003
    [4] Bruegge C J, Val S, Diner D J et al., 2014. Radiometric stability of the multi-angle imaging spectroradiometer (MISR) following 15 years on-orbit. In:Proceedings of the SPIE 9218, Earth Observing Systems XIX. San Diego, California, USA:SPIE, 9218:92180N. doi: 10.1117/12.2062319
    [5] Bull M, Matthews J, McDonald D et al., 2011. MISR Data Prod-uct Specifications Document (JPL D-13963, Revision S). Pas-adena:Jet Propulsion Laboratory, California Institute of Technology.
    [6] Chen Yongmei, Wang Jindi, Liang Shunlin et al., 2009. Compari-son of MISR and MODIS bidirectional reflectance products. Journal of Remote Sensing, 13(5):808-820. (in Chinese)
    [7] Chen Y M, Wang J D, Liang S L et al., 2008. The bidirectional reflectance signature of typical land surfaces and comparison of MISR and MODIS BRDF products. In:Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium. Boston, MA, USA:IEEE, Ⅲ-1099-Ⅲ-1102. doi: 10.1109/IGARSS.2008.4779546
    [8] Czapla-Myers J, Thome K, Anderson N et al., 2014. The absolute radiometric calibration of Terra imaging sensors:MODIS, MISR, and ASTER. In:Proceedings of the SPIE 9218, Earth Observing Systems XIX. San Diego, California, USA, 9218:92180Y. doi: 10.1117/12.2062529
    [9] Diner D J, Martonchik J V, Borel C et al., 2008. Multi-angle Im-aging SpectroRadiometer (MISR) Level 2 Surface Retrieval Algorithm Theoretical Basis (JPL D-11401, Revision E). Pas-adena:Jet Propulsion Laboratory, California Institute of Technology.
    [10] He T, Liang S L, Wang D D, 2017. Direct estimation of land sur-face albedo from simultaneous MISR data. IEEE Transactions on Geoscience and Remote Sensing, 55(5):2605-2617. doi: 10.1109/TGRS.2017.2648847
    [11] Hu B X, Lucht W, Li X W et al., 1997. Validation of kernel-driven semiempirical models for the surface bidirectional reflectance distribution function of land surfaces. Remote Sensing of Environment, 62(3):201-214. doi: 10.1016/S0034-4257(97)00082-5
    [12] Huang X Y, Jiao Z T, Dong Y D et al., 2013. Analysis of BRDF and albedo retrieved by kernel-driven models using field measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1):149-161. doi: 10.1109/JSTARS.2012.2208264
    [13] Liao Yao, Lü Daren, He Qing, 2014. Intercomparison of albedo product retrieved from MODIS, MISR and POLDER. Remote Sensing Technology and Application, 29(6):1008-1019. (in Chinese)
    [14] Liu X, Kafatos M, 2007. MISR multi-angular spectral remote sensing for temperate forest mapping at 1.1-km resolution. In-ternational Journal of Remote Sensing, 28(2):459-464. doi: 10.1080/01431160601075491
    [15] LP DAAC, 2017. Land cover type yearly L3 global 500 m SIN Grid. https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1
    [16] Lucht W, 1998. Expected retrieval accuracies of bidirectional reflectance and albedo from EOS-MODIS and MISR angular sampling. Journal of Geophysical Research:Atmospheres, 103(D8):8763-8778. doi: 10.1029/98JD00089
    [17] Lucht W, Lewis P, 2000. Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling. International Journal of Remote Sensing, 21(1):81-98. doi: 10.1080/014311600211000
    [18] Mahtab A, Sridhar V N, Navalgund R R, 2008. Impact of surface anisotropy on classification accuracy of selected vegetation classes:an evaluation using multidate multiangular MISR data over parts of Madhya Pradesh, India. IEEE Transactions on Geoscience and Remote Sensing, 46(1):250-258. doi:10. 1109/TGRS.2007.906157
    [19] MISR-Science-Team, 2015a. Terra/MISR Level 2 land surface data, version 2 retrieved from March 31, 2016 to March 30, 2017, from NASA ASDC. doi: 10.5067/Terra/MISR/MIL2ASLS_L2.002
    [20] MISR-Science-Team, 2015b. Terra/MISR level 2 TOA/Cloud classifiers, version 3 retrieved from Dec 31, 2017 to Feb 28, 2018, from NASA Atmospheric Science Data Center (ASDC). doi: 10.5067/Terra/MISR/MIL2TCCL_L2.003
    [21] Moroney C, DiGirolamo L, Jones A, 2014. MISR Data Products Specifications for the MISR Level 2 Classifiers Product (JPL D-81127, Revision A). Pasadena:Jet Propulsion Laboratory, California Institute of Technology.
    [22] Nag S, Gatebe C K, de Weck O, 2015. Observing system simula-tions for small satellite formations estimating bidirectional re-flectance. International Journal of Applied Earth Observation and Geoinformation, 43:102-118. doi:10.1016/j.jag.2015. 04.022
    [23] Nag S, Gatebe C K, Hilker T, 2017. Simulation of multiangular remote sensing products using small satellite formations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(2):638-653. doi:10.1109/Jstars.2016. 2570683
    [24] Pinty B, Taberner M, Haemmerle V R et al., 2011. Global-scale comparison of MISR and MODIS land surface albedos. Jour-nal of Climate, 24(3):732-749. doi: 10.1175/2010JCLI3709.1
    [25] Taberner M, Pinty B, Govaerts Y et al., 2010. Comparison of MISR and MODIS land surface albedos:methodology. Journal of Geophysical Research:Atmospheres, 115(D5):D05101. doi: 10.1029/2009jd012665
    [26] Wanner W, Strahler A H, Hu B et al., 1997. Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data:theory and algorithm. Journal of Ge-ophysical Research:Atmospheres, 102(D14):17143-17161. doi: 10.1029/96jd03295
    [27] Wu A S, Angal A, Xiong X X, 2014. Comparison of coincident MODIS and MISR reflectances over the 15-year period of EOS terra. In:Proceedings of the SPIE 9218, Earth Observing Systems XIX. San Diego, California, USA:SPIE, 9218:92180W. doi: 10.1117/12.2061117
    [28] Wu H Y, Liang S L, Tong L et al., 2011. Snow BRDF characteris-tics from MODIS and MISR data. In:Proceedings of 2011 IEEE International Geoscience and Remote Sensing Sympo-sium. Vancouver, BC, Canada:IEEE, 3187-3190. doi:10. 1109/IGARSS.2011.6049896DF products. In:Proceedings of 2008 IEEE International Geoscience and Remote Sensing Symposium. Boston, MA, USA:IEEE, Ⅲ-1099-Ⅲ-1102. doi:10.1109/IGARSS.2008.4779546
    [29] Czapla-Myers J, Thome K, Anderson N et al., 2014. The absolute radiometric calibration of Terra imaging sensors:MODIS, MISR, and ASTER. In:Proceedings of the SPIE 9218, Earth Observing Systems XIX. San Diego, California, USA, 9218:92180Y. doi: 10.1117/12.2062529
    [30] Diner D J, Martonchik J V, Borel C et al., 2008. Multi-angle Im-aging SpectroRadiometer (MISR) Level 2 Surface Retrieval Algorithm Theoretical Basis (JPL D-11401, Revision E). Pas-adena:Jet Propulsion Laboratory, California Institute of Technology.
    [31] He T, Liang S L, Wang D D, 2017. Direct estimation of land sur-face albedo from simultaneous MISR data. IEEE Transactions on Geoscience and Remote Sensing, 55(5):2605-2617. doi: 10.1109/TGRS.2017.2648847
    [32] Hu B X, Lucht W, Li X W et al., 1997. Validation of kernel-driven semiempirical models for the surface bidirectional reflectance distribution function of land surfaces. Remote Sensing of Environment, 62(3):201-214. doi:10.1016/S0034- 4257(97)00082-5
    [33] Huang X Y, Jiao Z T, Dong Y D et al., 2013. Analysis of BRDF and albedo retrieved by kernel-driven models using field measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(1):149-161. doi: 10.1109/JSTARS.2012.2208264
    [34] Liao Yao, Lü Daren, He Qing, 2014. Intercomparison of albedo product retrieved from MODIS, MISR and POLDER. Remote Sensing Technology and Application, 29(6):1008-1019. (in Chinese)
    [35] Liu X, Kafatos M, 2007. MISR multi-angular spectral remote sensing for temperate forest mapping at 1.1-km resolution. In-ternational Journal of Remote Sensing, 28(2):459-464. doi: 10.1080/01431160601075491
    [36] LP DAAC, 2017. Land cover type yearly L3 global 500 m SIN Grid. https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mcd12q1
    [37] Lucht W, 1998. Expected retrieval accuracies of bidirectional reflectance and albedo from EOS-MODIS and MISR angular sampling. Journal of Geophysical Research:Atmospheres, 103(D8):8763-8778. doi: 10.1029/98JD00089
    [38] Lucht W, Lewis P, 2000. Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling. International Journal of Remote Sensing, 21(1):81-98. doi: 10.1080/014311600211000
    [39] Mahtab A, Sridhar V N, Navalgund R R, 2008. Impact of surface anisotropy on classification accuracy of selected vegetation classes:an evaluation using multidate multiangular MISR data over parts of Madhya Pradesh, India. IEEE Transactions on Geoscience and Remote Sensing, 46(1):250-258. doi:10. 1109/TGRS.2007.906157
    [40] MISR-Science-Team, 2015a. Terra/MISR Level 2 land surface data, version 2 retrieved from March 31, 2016 to March 30, 2017, from NASA ASDC. doi: 10.5067/Terra/MISR/MIL2ASLS_L2.002
    [41] MISR-Science-Team, 2015b. Terra/MISR level 2 TOA/Cloud classifiers, version 3 retrieved from Dec 31, 2017 to Feb 28, 2018, from NASA Atmospheric Science Data Center (ASDC). doi: 10.5067/Terra/MISR/MIL2TCCL_L2.003
    [42] Moroney C, DiGirolamo L, Jones A, 2014. MISR Data Products Specifications for the MISR Level 2 Classifiers Product (JPL D-81127, Revision A). Pasadena:Jet Propulsion Laboratory, California Institute of Technology.
    [43] Nag S, Gatebe C K, de Weck O, 2015. Observing system simula-tions for small satellite formations estimating bidirectional re-flectance. International Journal of Applied Earth Observation and Geoinformation, 43:102-118. doi:10.1016/j.jag.2015. 04.022
    [44] Nag S, Gatebe C K, Hilker T, 2017. Simulation of multiangular remote sensing products using small satellite formations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(2):638-653. doi:10.1109/Jstars.2016. 2570683
    [45] Pinty B, Taberner M, Haemmerle V R et al., 2011. Global-scale comparison of MISR and MODIS land surface albedos. Jour-nal of Climate, 24(3):732-749. doi: 10.1175/2010JCLI3709.1
    [46] Taberner M, Pinty B, Govaerts Y et al., 2010. Comparison of MISR and MODIS land surface albedos:methodology. Journal of Geophysical Research:Atmospheres, 115(D5):D05101. doi: 10.1029/2009jd012665
    [47] Wanner W, Strahler A H, Hu B et al., 1997. Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data:theory and algorithm. Journal of Ge-ophysical Research:Atmospheres, 102(D14):17143-17161. doi: 10.1029/96jd03295
    [48] Wu A S, Angal A, Xiong X X, 2014. Comparison of coincident MODIS and MISR reflectances over the 15-year period of EOS terra. In:Proceedings of the SPIE 9218, Earth Observing Systems XIX. San Diego, California, USA:SPIE, 9218:92180W. doi: 10.1117/12.2061117
    [49] Wu H Y, Liang S L, Tong L et al., 2011. Snow BRDF characteris-tics from MODIS and MISR data. In:Proceedings of 2011 IEEE International Geoscience and Remote Sensing Sympo-sium. Vancouver, BC, Canada:IEEE, 3187-3190. doi:10. 1109/IGARSS.2011.6049896
    [50]  
  • [1] Kai LIU, Dapeng ZHANG, Tan CHEN, Peipei CUI, Chenyu FAN, Chunqiao SONG.  Monitoring Surface Water Change in Northeast China in 1999–2020: Evidence from Satellite Observation and Refined Classification . Chinese Geographical Science, 2024, 34(1): 106-117. doi: 10.1007/s11769-024-1411-3
    [2] Yue WANG, Yuting JIANG, Guoxu ZHU.  Spatio-temporal Evaluation of Multi-scale Cultivated Land System Resilience in Black Soil Region from 2000 to 2019: A Case Study of Liaoning Province, Northeast China . Chinese Geographical Science, 2024, 34(1): 168-180. doi: 10.1007/s11769-023-1405-6
    [3] Zheyuan ZHANG, Jia WANG, Nina XIONG, Boyi LIANG, Zong WANG.  Air Pollution Exposure Based on Nighttime Light Remote Sensing and Multi-source Geographic Data in Beijing . Chinese Geographical Science, 2023, 33(2): 320-332. doi: 10.1007/s11769-023-1339-z
    [4] Wenpeng DU, Huimin YAN, Zhiming FENG, Chao ZHANG, Yanzhao YANG.  Spatio-temporal Pattern of Ecosystem Pressure in Countries Along the Belt and Road: Combining Remote Sensing Data and Statistical Data . Chinese Geographical Science, 2022, 32(5): 745-758. doi: 10.1007/s11769-022-1298-9
    [5] Song SONG, Zheng CAO, Zhifeng WU, Xiaowei CHUAI.  Spatial and Temporal Dynamics of Surface Water in China from the 1980s to 2015 Based on Remote Sensing Monitoring . Chinese Geographical Science, 2022, 32(1): 174-188. doi: 10.1007/s11769-021-1252-2
    [6] Hanyu LI, Hermann KAUFMANN, Guochang XU.  Modeling Spatio-temporal Drought Events Based on Multi-temporal, Multi-source Remote Sensing Data Calibrated by Soil Humidity . Chinese Geographical Science, 2022, 32(1): 127-141. doi: 10.1007/s11769-021-1250-4
    [7] CAO Xiaoming, Feng Yiming, SHI Zhongjie.  Spatio-temporal Variations in Drought with Remote Sensing from the Mongolian Plateau During 1982-2018 . Chinese Geographical Science, 2020, 30(6): 1081-1094. doi: 10.1007/s11769-020-1167-3
    [8] LIU Qingsheng, LIU Gaohuan, HUANG Chong, LI He.  Remote Sensing Monitoring of Surface Characteristics in the Badain Jaran, Tengger, and Ulan Buh Deserts of China . Chinese Geographical Science, 2019, 20(1): 151-165. doi: 10.1007/s11769-018-0997-8
    [9] LU Tianqi, CHEN Shengbo, TU Yuan, YU Yan, CAO Yijing, JIANG Deyang.  Comparative Study on Coastal Depth Inversion Based on Multi-source Remote Sensing Data . Chinese Geographical Science, 2019, 20(2): 192-201. doi: 10.1007/s11769-018-1013-z
    [10] ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin.  Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data . Chinese Geographical Science, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8
    [11] HU Deyong, CHEN Shanshan, QIAO Kun, CAO Shisong.  Integrating CART Algorithm and Multi-source Remote Sensing Data to Estimate Sub-pixel Impervious Surface Coverage: A Case Study from Beijing Municipality, China . Chinese Geographical Science, 2017, 27(4): 614-625. doi: 10.1007/s11769-017-0882-x
    [12] ZHU Jishuai, TIAN Shufang, TAN Kun, DU Peijun.  Human Settlement Analysis Based on Multi-temporal Remote Sensing Data: A Case Study of Xuzhou City, China . Chinese Geographical Science, 2016, 26(3): 389-400. doi: 10.1007/s11769-016-0815-0
    [13] ZHU Xiaohua, ZHAO Yingshi, FENG Xiaoming.  A Methodology for Estimating Leaf Area Index by Assimilating Remote Sensing Data into Crop Model Based on Temporal and Spatial Knowledge . Chinese Geographical Science, 2013, 23(5): 550-561. doi: 10.1007/s11769-013-0621-x
    [14] YAN Haowen.  Fundamental Theories of Spatial Similarity Relations in Multi-scale Map Spaces . Chinese Geographical Science, 2010, 20(1): 18-22. doi: 10.1007/s11769-010-0018-z
    [15] PENG Guangxiong, DENG Lei, CUI Weihong, MING Tao, SHEN Wei.  Remote Sensing Monitoring of Tobacco Field Based on Phenological Characteristics and Time Series Image―A Case Study of Chengjiang County, Yunnan Province, China . Chinese Geographical Science, 2009, 19(2): 186-193. doi: 10.1007/s11769-009-0186-x
    [16] LIN Hui, DU Pei-jun, ZHAO Chang-sheng, SHU Ning.  EDGE DETECTION METHOD OF REMOTE SENSING IMAGES BASED ON MATHEMATICAL MORPHOLOGY OF MULTI-STRUCTURE ELEMENTS . Chinese Geographical Science, 2004, 14(3): 263-268.
    [17] ZHAO Shu-he, FENG Xue-zhi, KANG Guo-ding, RAMADAN Elnazir.  MULTI-SOURCE REMOTE SENSING IMAGE FUSION BASED ON SUPPORT VECTOR MACHINE . Chinese Geographical Science, 2002, 12(3): 244-248.
    [18] 王学全, 高前兆.  THE PRECIPITATION INFILTRATION AND RUNOFF RECHARGING EXPERIMENT OBSERVATION IN THE TAKLIMAKAN DESERT . Chinese Geographical Science, 1999, 9(3): 284-288.
    [19] Lin Hui, Xia Fuxiang.  A MULTI-WINDOW GIS APPROACH FOR WATER QUALITY DATA ANALYSIS . Chinese Geographical Science, 1995, 5(3): 257-264.
    [20] 费洪平.  MODELS OF THE SPATIAL EVOLUTION OF MULTI-PLANT ENTERPRISES . Chinese Geographical Science, 1994, 4(2): 134-147.
  • 加载中
计量
  • 文章访问数:  420
  • HTML全文浏览量:  31
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-04
  • 修回日期:  2018-09-10
  • 刊出日期:  2019-08-01

Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia

doi: 10.1007/s11769-019-1052-0
    基金项目:  Under the auspices the Fundamental Research Funds for the Central Universities, China (No. 2017TD-26), the Plan for Changbai Mountain Scholars of Jilin Province, China (No. JJLZ[2015]54)
    通讯作者: CHEN Shengbo.E-mail:chensb@jlu.edu.cn

摘要: The Multi-angle imaging spectroradiometer (MISR) land-surface (LS) bidirectional reflectance factor (BRF) product (MILS_BRF) has unique semi-simultaneous multi-angle sampling and global coverage. However, unlike on-satellite observations, the spatio-temporal characteristics of MILS_BRF data have rarely been explicitly and comprehensively analysed. Results from 5-yr (2011-2015) of MILS_BRF dataset from a typical region in central Northeast Asia as the study area showed that the monthly area coverage as well as MILS_BRF data quantity varies significantly, from the highest in October (99.05%) through median in June/July (78.09%/75.21%) to lowest in January (18.97%), and a large data-vacant area exists in the study area during four consecutive winter months (December through March). The data-vacant area is mainly composed of crop lands and cropland/natural vegetation mosaic. The amount of data within the principal plane (PP) ±30° (nPP) or cross PP ±30° (nCP), varies intra-annually with significant differences from different view zeniths or forward/backward scattering directions. For example, multiple off-nadir cameras have nPP but no nCP data for up to six months (September through February), with the opposite occurring in June and July. This study provides explicit and comprehensive information about the spatio-temporal characteristics of product coverage and observation geometry of MILS_BRF in the study area. Results provide required user reference information for MILS_BRF to evaluate performance of BRDF models or to compare with other satellite-derived BRF or albedo products. Comparing this final product to on-satellite observations, what was found here reveals a new perspective on product spatial coverage and observation geometry for multi-angle remote sensing.

English Abstract

LI Jian, CHEN Shengbo, QIN Wenhan, Mike MUREFU, WANG Yufei, YU Yan, ZHEN Zhijun. Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia[J]. 中国地理科学, 2019, 20(4): 679-688. doi: 10.1007/s11769-019-1052-0
引用本文: LI Jian, CHEN Shengbo, QIN Wenhan, Mike MUREFU, WANG Yufei, YU Yan, ZHEN Zhijun. Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia[J]. 中国地理科学, 2019, 20(4): 679-688. doi: 10.1007/s11769-019-1052-0
LI Jian, CHEN Shengbo, QIN Wenhan, Mike MUREFU, WANG Yufei, YU Yan, ZHEN Zhijun. Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia[J]. Chinese Geographical Science, 2019, 20(4): 679-688. doi: 10.1007/s11769-019-1052-0
Citation: LI Jian, CHEN Shengbo, QIN Wenhan, Mike MUREFU, WANG Yufei, YU Yan, ZHEN Zhijun. Spatio-temporal Characteristics of Area Coverage and Observation Geometry of the MISR Land-surface BRF Product: A Case Study of the Central Part of Northeast Asia[J]. Chinese Geographical Science, 2019, 20(4): 679-688. doi: 10.1007/s11769-019-1052-0
参考文献 (50)

目录

    /

    返回文章
    返回