留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval

JIANG Tao ZHAO Kai ZHENG Xingming CHEN Si WAN Xiangkun

JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. 中国地理科学, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0
引用本文: JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. 中国地理科学, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0
JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. Chinese Geographical Science, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0
Citation: JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. Chinese Geographical Science, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0

Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval

doi: 10.1007/s11769-019-1028-0
基金项目: Under the auspices of the Outstanding Young Talent Foundation Project of the Jilin Science and Technology Devel-opment Plan (No. 20170520078JH), the Science and Technology Basic Work of Science and Technology (No. 2014FY210800-4)
详细信息
    通讯作者:

    ZHAO Kai.E-mail:zhaokai@iga.ac.cn

Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval

Funds: Under the auspices of the Outstanding Young Talent Foundation Project of the Jilin Science and Technology Devel-opment Plan (No. 20170520078JH), the Science and Technology Basic Work of Science and Technology (No. 2014FY210800-4)
More Information
    Corresponding author: ZHAO Kai
  • 摘要: The parameter bp in the tuo-omega (τ-ω) model is important for retrieving soil moisture data from passive microwave brightness temperatures. Theoretically, bp depends on the observation mode (polarization, frequency, and incidence angle) and vegetation properties and varies with vegetation growth. For simplicity, previous studies have taken bp to be a constant. However, to reduce the uncertainty of soil moisture retrieval further, the present study is of the dynamics of bp based on the SMAPVEX12 experimental dataset by combining a genetic algorithm and the L-MEB microwave radiative transfer model of vegetated soil. The results show the following. First, bp decreases nonlinearly with vegetation water content (VWC), decreasing critically when VWC becomes less than 2 kg/m2. Second, there is a power law between bp and VWC for both horizontal and vertical polarizations (R2=0.919 and 0.872, respectively). Third, the effectiveness of this relationship is verified by comparing its soil-moisture inversion accuracy with the previous constant-bp method based on the HiWATER dataset. Doing so reveals that the dynamic bp method reduces the root-mean-square error of the retrieved soil moisture by approximately 0.06 cm3/cm3, and similar improvement is obtained for the calibrated SMAPVEX12 dataset. Our results indicate that the dynamic bp method is reasonable for different vegetation growth stages and could improve the accuracy of soil moisture retrieval.
  • [1] Burke E J, Wigneron J P, Gurney R J, 1999. Research Note:the comparison of two models that determine the effects of a veg-etation canopy on passive microwave emission. Hydrology and Earth System Sciences, 3(3):439-444. doi: 10.5194/hess-3-439-1999
    [2] Choudhury B J, Schmugge T J, Mo T, 1982. A parameterization of effective soil temperature for microwave emission. Journal of Geophysical Research:Oceans, 87(C2):1301-1304. doi: 10.1029/JC087iC02p01301
    [3] Entekhabi D, Yueh S, O'Neill P E et al., 2014. SMAP Handbook:Soil Moisture Active Passive, Mapping Soil Moisture and Freeze/Thaw from Space. Pasadena, CA:JPL Publication.
    [4] Escorihuela M J, Kerr Y H, de Rosnay P et al., 2007. A simple model of the bare soil microwave emission at L-band. IEEE Transactions on Geoscience and Remote Sensing, 45(7):1978-1987. doi: 10.1109/TGRS.2007.894935
    [5] Fan L, Xiao Q, Wen J G et al., 2015. Mapping high-resolution soil moisture over heterogeneous cropland using multi-resource remote sensing and ground observations. Remote Sensing, 7(10):13273-13297. doi: 10.3390/rs71013273
    [6] Goldberg D E, 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, Mass.:Addison-Wesley Pro-fessional.
    [7] Holmes T R H, De Rosnay P, De Jeu R et al., 2006. A new pa-rameterization of the effective temperature for L band radiom-etry. Geophysical Research Letters, 33(7):L07405. doi: 10.1029/2006GL025724
    [8] Jackson T J, Schmugge T J, Wang J R, 1982. Passive microwave sensing of soil moisture under vegetation canopies. Water Re-sources Research, 18(4):1137-1142. doi: 10.1029/WR018i004p01137
    [9] Jackson T J, Schmugge T J, 1991. Vegetation effects on the mi-crowave emission of soils. Remote Sensing of Environment, 36(3):203-212. doi: 10.1016/0034-4257(91)90057-D
    [10] Jackson T J, O'Neill P E, 1990. Attenuation of soil microwave emission by corn and soybeans at 1.4 and 5 GHz. IEEE Transactions on Geoscience and Remote Sensing, 28(5):978-980. doi: 10.1109/36.58989
    [11] Kerr Y H, Waldteufel P, Richaume P et al., 2012. The SMOS soil moisture retrieval algorithm. IEEE Transactions on Geoscience and Remote Sensing, 50(5):1384-1403. doi: 10.1109/TGRS.2012.2184548
    [12] Kurum M, 2013. Quantifying scattering albedo in microwave emission of vegetated terrain. Remote Sensing of Environment, 129:66-74. doi: 10.1016/j.rse.2012.10.021
    [13] Le Vine D M, Karam M A, 1996. Dependence of attenuation in a vegetation canopy on frequency and plant water content. IEEE Transactions on Geoscience and Remote Sensing, 34(5):1090-1096. doi: 10.1109/36.536525.
    [14] Li Dazhi, Jin Rui, Che Tao et al., 2014. Soil moisture retrieval from airborne PLMR and MODIS products in the Zhangye oasis of middle stream of the Heihe River Basin, China. Advances in Earth Science, 29(2):295-305. (in Chinese)
    [15] Li X, Cheng G D, Liu S M et al., 2013. Heihe watershed allied telemetry experimental research (HiWATER):scientific objec-tives and experimental design. Bulletin of the American Mete-orological Society, 94(8):1145-1160. doi: 10.1175/BAMS-D-12-00154.1
    [16] Loew A, 2008. Impact of surface heterogeneity on surface soil moisture retrievals from passive microwave data at the regional scale:the Upper Danube case. Remote Sensing of Environment, 112(1):231-248. doi: 10.1016/j.rse.2007.04.009
    [17] Ma M G, Chen Y Y, Wang X F et al., 2013. HiWATER:Dataset of Soil Parameters in the Middle Reaches of the Heihe River Ba-sin. Lanzhou, China:Heihe Plan Science Data Center. doi: 10.3972/hiwater.147.2013.db
    [18] Mironov V L, Kosolapova L G, Fomin S V, 2009. Physically and mineralogically based spectroscopic dielectric model for moist soils. IEEE Transactions on Geoscience and Remote Sensing, 47(7):2059-2070. doi: 10.1109/TGRS.2008.2011631
    [19] Njoku E G, Jackson T J, Lakshmi V et al., 2003. Soil moisture retrieval from AMSR-E. IEEE Transactions on Geoscience and Remote Sensing, 41(2):215-229. doi:10.1109/TGRS. 2002.808243
    [20] Pampaloni P, Paloscia S, 1986. Microwave emission and plant water content:a comparison between field measurements and theory. IEEE Transactions on Geoscience and Remote Sensing, GE-24(6):900-905. doi: 10.1109/TGRS.1986.289705
    [21] Panciera R, Walker J P, Kalma J D et al., 2009. Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval al-gorithm. Remote Sensing of Environment, 113(2):435-444. doi: 10.1016/j.rse.2008.10.010
    [22] Pardé M, Wigneron J P, Chanzy A et al., 2003. Retrieving surface soil moisture over a wheat field:comparison of different methods. Remote Sensing of Environment, 87(2-3):334-344. doi: 10.1016/j.rse.2003.08.002
    [23] Pellarin T, Wigneron J P, Calvet J C et al., 2003. Two-year global simulation of l-band brightness temperatures over land. IEEE Transactions on Geoscience and Remote Sensing, 41(9):2135-2139. doi: 10.1109/TGRS.2003.815417
    [24] Saleh K, Wigneron J P, Waldteufel P et al., 2007. Estimates of surface soil moisture under grass covers using L-band radiom-etry. Remote Sensing of Environment, 109(1):42-53. doi: 10.1016/j.rse.2006.12.002
    [25] SMAP, 2012a. SMAP Validation Experiment 2012 (SMAPVEX12) Experimental Plan. https://smapvex12.espace-web.usherbrooke.ca/SMAPVEX12_Experiment_Plan.pdf. Updated 22 May 2012.
    [26] SMAP, 2012b. SMAP Validation Experiment 2012 (SMAPVEX12) Database Report. https://smapvex12.espaceweb.usherbrooke.ca/SMAPVEX12_Database_Report_final.pdf. Updated 18 De-cember 2012.
    [27] Ulaby F T, Moore R K, Fung A K, 1986. Microwave Remote Sensing vol. Ⅲ, From Theory to Applications. London, UK:Artech House.
    [28] Ulaby F T, Tavakoli A, Thomas B A, 1987. Microwave propaga-tion constant for a vegetation canopy with vertical stalks. IEEE Transactions on Geoscience and Remote Sensing, GE-25(6):714-725. doi: 10.1109/TGRS.1987.289741
    [29] Van De Griend A A, Owe M, De Ruiter J et al., 1996. Measure-ment and behavior of dual-polarization vegetation optical depth and single scattering albedo at 1.4-and 5-GHz microwave frequencies. IEEE Transactions on Geoscience and Remote Sensing, 34(4):957-965. doi: 10.1109/36.508412
    [30] Van de Griend A A, Wigneron J P, Waldteufel P, 2003. Conse-quences of surface heterogeneity for parameter retrieval from 1.4-GHz multiangle SMOS observations. IEEE Transactions on Geoscience and Remote Sensing, 41(4):803-811. doi: 10.1109/TGRS.2003.811083
    [31] Van De Griend A A, Wigneron J P, 2004. The b-factor as a func-tion of frequency and canopy type at H-polarization. IEEE Transactions on Geoscience and Remote Sensing, 42(4):786-794. doi: 10.1109/TGRS.2003.821889
    [32] Wang J R, Choudhury B J, 1981. Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency. Journal of Ge-ophysical Research, 86(C6):5277-5282. doi: 10.1029/JC086iC06p05277
    [33] Wigneron J P, Chanzy A, Calvet J C et al., 1995a. A simple algo-rithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields. Remote Sensing of Environment, 51(3):331-341. doi: 10.1016/0034-4257(94)00081-W
    [34] Wigneron J P, Calvet J C, Chanzy A et al., 1995b. A composite discrete-continuous approach to model the microwave emission of vegetation. IEEE Transactions on Geoscience and Remote Sensing, 33(1):201-210. doi: 10.1109/36.368208
    [35] Wigneron J P, Calvet J C, Kerr Y, 1996. Monitoring water inter-ception by crop fields from passive microwave observations. Agricultural and Forest Meteorology, 80(2-4):122-194. doi: 10.1016/0168-1923(95)02296-1
    [36] Wigneron J P, Laguerre L, Kerr Y H, 2001. A simple parameteri-zation of the L-band microwave emission from rough agricul-tural soils. IEEE Transactions on Geoscience and Remote Sensing, 39(8):1697-1707. doi: 10.1109/36.942548
    [37] Wigneron J P, Calvet J C, De Rosnay P et al., 2004a. Soil moisture retrievals from biangular L-band passive microwave ob-servations. IEEE Geoscience and Remote Sensing Letters, 1(4):277-281. doi: 10.1109/LGRS.2004.834594
    [38] Wigneron J P, Pardé M, Waldteufel P et al., 2004b. Characterizing the dependence of vegetation model parameters on crop struc-ture, incidence angle, and polarization at L-band. IEEE Trans-actions on Geoscience and Remote Sensing, 42(2):416-425. doi: 10.1109/TGRS.2003.817976
    [39] Wigneron J P, Andersen S, Boutin J et al., 2006. Surface emission. In:Mätzler C (ed). Thermal Microwave Radiation:Applications for Remote Sensing. London, UK:The Institution of Engineering and Technology.
    [40] Wigneron J P, Kerr Y, Waldteufel P et al., 2007. L-band microwave emission of the biosphere (L-MEB) model:description and calibration against experimental data sets over crop fields. Remote Sensing of Environment, 107(4):639-655. doi:10. 1016/j.rse.2006.10.014
    [41] Yan S, Jiang L M, Chai L N et al., 2015. Calibration of the L-MEB model for croplands in HiWATER using PLMR observation. Remote Sensing, 7(8):10878-10897. doi: 10.3390/rs70810878
  • [1] Shan YU, Wala DU, Xiang ZHANG, Ying HONG, Yang LIU, Mei HONG, Siyu CHEN.  Spatiotemporal Changes in NDVI and Its Driving Factors in the Kherlen River Basin . Chinese Geographical Science, 2023, 33(2): 377-392. doi: 10.1007/s11769-023-1337-1
    [2] WANG Zhaojun, ZHANG Gang, CHEN Xiaobing, ZHAO Qiaojing, WANG Weiying, SHENG Lianxi, BIAN Hongfeng, LI Zhenxin, WANG Deli.  Measurement and Scaling of Mercury on Soil and Air in a Historical Artisanal Gold Mining Area in Northeastern China . Chinese Geographical Science, 2019, 20(2): 245-257. doi: 10.1007/s11769-019-1026-2
    [3] WANG Peijiang, ZHENG Haifeng, REN Zhibin, ZHANG Dan, ZHAI Chang, MAO Zhixia, TANG Ze, HE Xingyuan.  Effects of Urbanization, Soil Property and Vegetation Configuration on Soil Infiltration of Urban Forest in Changchun, Northeast China . Chinese Geographical Science, 2018, 28(3): 482-494. doi: 10.1007/s11769-018-0953-7
    [4] CHEN Shengbo, HUANG Shuang, LIU Yanli, ZHOU Chao.  Soil and Vegetation Spectral Coupling Difference (SVSCD) for Minerals Extraction from Hyperion Data in Vegetation Covered Area . Chinese Geographical Science, 2018, 28(6): 957-972. doi: 10.1007/s11769-018-1005-z
    [5] GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan.  Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis . Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
    [6] LIU Miao, LIU Guohua, WU Xing, WANG Hao, CHEN Li.  Vegetation Traits and Soil Properties in Response to Utilization Patterns of Grassland in Hulun Buir City, Inner Mongolia, China . Chinese Geographical Science, 2014, 0(4): 471-478. doi: 10.1007/s11769-014-0706-1
    [7] WANG Qiang, ZHANG Zhongsheng1, ZHOU Xuehong, LU Xianguo.  Mercury Distribution and Accumulation in Typical Wetland Ecosystems of Sanjiang Plain, Northeast China . Chinese Geographical Science, 2013, 23(1): 49-58.
    [8] LI Shanghua, ZHOU Demin, LUAN Zhaoqing, et al..  Quantitative Simulation on Soil Moisture Contents of Two Typical Vegetation Communities in Sanjiang Plain, China . Chinese Geographical Science, 2011, 21(6): 723-733.
    [9] JIA Yuanyuan, LI Zhaoliang.  Soil-Vegetation-Atmosphere Radiative Transfer Model in Microwave Region . Chinese Geographical Science, 2008, 18(2): 171-177. doi: 10.1007/s11769-008-0171-9
    [10] WEI Xinghu, LI Sen, Yang Ping, Cheng Huaishun.  Soil Erosion and Vegetation Succession in Alpine Kobresia Steppe Meadow Caused by Plateau Pika——A Case Study of Nagqu County, Tibet . Chinese Geographical Science, 2007, 17(1): 75-81. doi: 10.1007/s11769-007-0075-0
    [11] SONG Dongsheng, ZHAO Kai, GUAN Zhi.  Advances in Research on Soil Moisture by Microwave Remote Sensing in China . Chinese Geographical Science, 2007, 17(2): 186-191. doi: 10.1007/s11769-007-0186-7
    [12] XU Weixin, LIU Xiaodong.  Response of Vegetation in the Qinghai-Tibet Plateau to Global Warming . Chinese Geographical Science, 2007, 17(2): 151-159. doi: 10.1007/s11769-007-0151-5
    [13] GUAN Zhi, ZHAO Kai, SONG Dong-sheng.  EXPERIMENTAL STUDY ON SOIL MOISTURE USING DUAL-FREQUENCY MICROWAVE RADIOMETER . Chinese Geographical Science, 2006, 16(1): 83-86.
    [14] ZHU Xiao-hua, Patel NILANCHAL, ZUO Wei, YANG Xiu-chun.  FRACTAL ANALYSIS APPLIED TO SPATIAL STRUCTURE OF CHINA'S VEGETATION . Chinese Geographical Science, 2006, 16(1): 48-55.
    [15] ZHANG Lei, SONG Feng-bin.  SORPTION AND DESORPTION CHARACTERISTICS OF CADMIUM BY FOUR DIFFERENT SOILS IN NORTHEAST CHINA . Chinese Geographical Science, 2005, 15(4): 343-347.
    [16] GAO Jun-feng, LI Chang-feng, ZHANG Hong-hui.  SOIL SPATIAL ANALYSIS AND AGRICULTURAL LAND USE OPTIMIZATION BY USING GIS . Chinese Geographical Science, 2003, 13(1): 25-29.
    [17] 邹春静, 徐文铎, 卜军.  INFLUENCE OF GLOBAL WARMING ON VEGETATION IN NORTHEAST CHINA . Chinese Geographical Science, 1997, 7(1): 68-78.
    [18] 张晓平, 科扬川.  RESEARCHES ON SOIL ENVIRONMENTAL BACKGROUND VALUES IN TIBET . Chinese Geographical Science, 1995, 5(1): 56-65.
    [19] 王景华.  BACKGROUND VALUES AND TREND DISTRIBUTION OF Cu, Zn AND Ni IN SOILS IN CHINA . Chinese Geographical Science, 1992, 2(4): 357-366.
    [20] 缪天成, 王惠琪, 郑春江.  STUDIES ON ENVIRONMENTAL BACKGROUND VALUES IN CHINA . Chinese Geographical Science, 1991, 1(4): 306-315.
  • 加载中
计量
  • 文章访问数:  319
  • HTML全文浏览量:  29
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-18
  • 刊出日期:  2019-04-01

Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval

doi: 10.1007/s11769-019-1028-0
    基金项目:  Under the auspices of the Outstanding Young Talent Foundation Project of the Jilin Science and Technology Devel-opment Plan (No. 20170520078JH), the Science and Technology Basic Work of Science and Technology (No. 2014FY210800-4)
    通讯作者: ZHAO Kai.E-mail:zhaokai@iga.ac.cn

摘要: The parameter bp in the tuo-omega (τ-ω) model is important for retrieving soil moisture data from passive microwave brightness temperatures. Theoretically, bp depends on the observation mode (polarization, frequency, and incidence angle) and vegetation properties and varies with vegetation growth. For simplicity, previous studies have taken bp to be a constant. However, to reduce the uncertainty of soil moisture retrieval further, the present study is of the dynamics of bp based on the SMAPVEX12 experimental dataset by combining a genetic algorithm and the L-MEB microwave radiative transfer model of vegetated soil. The results show the following. First, bp decreases nonlinearly with vegetation water content (VWC), decreasing critically when VWC becomes less than 2 kg/m2. Second, there is a power law between bp and VWC for both horizontal and vertical polarizations (R2=0.919 and 0.872, respectively). Third, the effectiveness of this relationship is verified by comparing its soil-moisture inversion accuracy with the previous constant-bp method based on the HiWATER dataset. Doing so reveals that the dynamic bp method reduces the root-mean-square error of the retrieved soil moisture by approximately 0.06 cm3/cm3, and similar improvement is obtained for the calibrated SMAPVEX12 dataset. Our results indicate that the dynamic bp method is reasonable for different vegetation growth stages and could improve the accuracy of soil moisture retrieval.

English Abstract

JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. 中国地理科学, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0
引用本文: JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. 中国地理科学, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0
JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. Chinese Geographical Science, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0
Citation: JIANG Tao, ZHAO Kai, ZHENG Xingming, CHEN Si, WAN Xiangkun. Dynamic bp in the L Band and Its Role in Improving the Accuracy of Soil Moisture Retrieval[J]. Chinese Geographical Science, 2019, 20(2): 283-292. doi: 10.1007/s11769-019-1028-0
参考文献 (41)

目录

    /

    返回文章
    返回