留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE

ZHANG Pengfei CHEN Xi BAO Anming LIU Tie Felix NDAYISABA

ZHANG Pengfei, CHEN Xi, BAO Anming, LIU Tie, Felix NDAYISABA. Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE[J]. 中国地理科学, 2017, 27(6): 918-933. doi: 10.1007/s11769-017-0914-6
引用本文: ZHANG Pengfei, CHEN Xi, BAO Anming, LIU Tie, Felix NDAYISABA. Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE[J]. 中国地理科学, 2017, 27(6): 918-933. doi: 10.1007/s11769-017-0914-6
ZHANG Pengfei, CHEN Xi, BAO Anming, LIU Tie, Felix NDAYISABA. Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE[J]. Chinese Geographical Science, 2017, 27(6): 918-933. doi: 10.1007/s11769-017-0914-6
Citation: ZHANG Pengfei, CHEN Xi, BAO Anming, LIU Tie, Felix NDAYISABA. Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE[J]. Chinese Geographical Science, 2017, 27(6): 918-933. doi: 10.1007/s11769-017-0914-6

Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE

doi: 10.1007/s11769-017-0914-6
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41371419), Key Program for International Science and Technique Cooperation Projects of China (No. 2010DFA92720-04)
详细信息
    通讯作者:

    BAO Anming.E-mail:baoam@ms.xjb.ac.cn

Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE

Funds: Under the auspices of National Natural Science Foundation of China (No. 41371419), Key Program for International Science and Technique Cooperation Projects of China (No. 2010DFA92720-04)
More Information
    Corresponding author: BAO Anming.E-mail:baoam@ms.xjb.ac.cn
  • 摘要: The mountainous areas of Central Asia provide substantial water resources, and studying change in water storage and the impacts of precipitation and snow cover in the mountain ranges of Central Asia is of the greatest importance for understanding regional water shortages and the main factors. Data from the GRACE (Gravity Recovery and Climate Experiment) satellites, precipitation products and snow-covered area data were used to analyze the spatio-temporal characteristics of water storage changes and the effects of precipitation and snow cover from April 2002 to December 2013. The results were computed for each mountain ranges, and the following conclusions were drawn. The water storage in the mountainous areas of Central Asia as a whole increases in summer and winter, whereas it decreases in autumn. The water storage is affected by precipitation to some extent and some areas exhibit hysteresis. The area of positive water storage changes moves from west to east over the course of the year. The water storage declined during the period 2002-2004. It then returned to a higher level in 2005-2006 and featured lower levels in 2007-2009 Subsequently, the water storage increased gradually from 2010 to 2013. The Eastern Tianshan Mountains and Western Tianshan Mountain subzones examined in this study display similar tendencies, and the trends observed in the Karakorum Mountains and the Kunlun Mountains are also similar. However, the Eastern Tianshan Mountains and Western Tianshan Mountains were influenced by precipitation to a greater degree than the latter two ranges. The water storage in Qilian Mountains showed a pronounced increasing trend, and this range is the most strongly affected by precipitation. Based on an analysis of all investigated subzones, precipitation has the greatest influence on total water storage relative to the snow covered area in some areas of Central Asia. The results obtained from this study will be of value for scientists studying the mechanisms that influence changes in water storage in Central Asia.
  • [1] Andersen O B, Hinderer J, 2005. Global inter-annual gravity changes from grace:early results. Geophysical Research Letters, 32(1):L01402. doi: 10.1029/2004GL020948
    [2] Baker R H A, Sansford C E, Jarvis C H et al., 2000. The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agriculture, Ecosystems & Environment, 82(1-3):57-71. doi: 10.1016/S0167-8809(00)00216-4
    [3] Crowley J W, Mitrovica J X, Bailey R C et al., 2008. Annual variations in water storage and precipitation in the Amazon Basin. Journal of Geodesy, 82(1):9-13. doi: 10.1007/s00190-007-0153-1
    [4] Chen J L, Wilson C R, Seo K W, 2006. Spatial sensitivity of the gravity recovery and climate experiment (GRACE)time-variable gravity observations. Journal of Geophysical Research, 111(B6):B08408. doi: 10.1029/2005JB004064
    [5] Güntner A, 2008. Improvement of global hydrological models using GRACE data. Surveys in Geophysics, 29(4-5):375-397.doi: 10.1007/s10712-008-9038-y
    [6] Hu X G, Chen J L, Zhou Y H et al., 2006. Seasonal water storage change of the Yangtze River basin detected by GRACE. Science in China Series D, 49(5):483-491. doi: 10.1007/s11430-006-0483-5
    [7] Lemoine J M, Bruinsma S, Loyer S, et al., 2007. Temporal gravity field models inferred from GRACE data. Advances in Space Research, 39(10):1620-1629. doi: 10.1016/j.asr.2007.03.062
    [8] Nastula J, Salstein D A, Popiński W, 2015. Hydrological excitations of polar motion from GRACE gravity field solutions. In:Rizos C, Willis P. IAG 150 Years. International Association of Geodesy Symposia. Cham:Springer, 513-519. doi:10.1007/ 1345_2015_85
    [9] Rodell M, Famiglietti J S, 2001. An analysis of terrestrial water storage variations in Illinois with implications for the Gravity Recovery and Climate Experiment (GRACE). Water Resources Research, 37(5):1327-1339. doi: 10.1029/2000WR900306
    [10] Rodell M, Houser P R, Jambor U et al., 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3):381-394. doi: 10.1175/BAMS-85-3-381
    [11] Rodell M, Velicogna I, Famiglietti J S, 2009. Satellite-based estimates of groundwater depletion in India. Nature, 460(7258):999-1002. doi: 10.1038/nature08238
    [12] Seyoum W M, Milewski A M, 2016. Monitoring and comparison of terrestrial water storage changes in the northern high plains using GRACE and in-situ based integrated hydrologic model estimates. Advances in Water Resources, 94:31-44. doi:10.1016/j.advwatres.2016. 04.014
    [13] Seyoum W M, Milewski A M, 2016. Monitoring and comparison of terrestrial water storage changes in the northern high plains using GRACE and in-situ based integrated hydrologic model estimates. Advances in Water Resources, 94:31-44. doi:10. 1016/j.advwatres.2016.04.014
    [14] Shi Yafeng, Shen Yongping, Hu Ruji, 2002. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in northwest China. Journal of Glaciolgy and Geocryology, 24(3):219-226. doi:10.3969/j.issn.1000-0240. 2002.03.001 (in Chinese)
    [15] Sun Guiyan, Guo Lingpeng, Chang Cun et al., 2006. Contrast and analysis of water storage changes in the north slopes and south slopes of the central Tianshan Mountains in Xinjiang. Arid Land Geography, 39(2):254-264. doi:10.13826/j.cnki.cn65-1103/x.2016.02.004 (in Chinese)
    [16] Sun Qian, Tashpolat T, Ding Jianli et al., 2014. GRACE data-based estimation of spatial variations in water storage over the central Asia during 2003-2013. Acta Astronomica Sinica, 55(6):498-511. (in Chinese)
    [17] Swenson S, Wahr J, 2002. Methods for inferring regional surface-mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time-variable gravity.Journal of Geophysical Research, 107(B9):2193. doi:10. 1029/2001JB000576
    [18] Swenson S, Wahr J, Milly P C D, 2003. Estimated accuracies of regional water storage variations inferred from the Gravity Recovery and Climate Experiment (GRACE). Water Resources Research, 39(8):1223. doi: 10.1029/2002WR001808
    [19] Tangdamrongsub N, Hwang C, Kao Y C, 2011. Water storage loss in central and south Asia from GRACE satellite gravity:correlations with climate data. Natural Hazards, 59(2):749-769. doi: 10.1007/s11069-011-9793-9
    [20] Tapley B D, Bettadpur S, Watkins M, et al., 2004. The gravity recovery and climate experiment:Mission overview and early results. Geophysical Research Letters, 31(31):4 PP. doi:10. 1029/2004GL019779
    [21] Wahr J, Molenaar M, Bryan F, 1998. Time variability of the Earth's gravity field:hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research, 103(B12):30205-30229. doi: 10.1029/98JB02844
    [22] Wahr J, Swenson S, Zlotnicki V et al., 2004. Time-variable gravity from GRACE:first results. Geophysical Research Letters, 31(11):L11501. doi: 10.1029/2004GL019779
    [23] Wang Puyu, Li Zhongqin, Wang Wenbin et al., 2014. Glacier volume calculation from ice-thickness data for mountain glaciers-a case study of glacier No. 4 of Sigong River over Mt.Bogda, Eastern Tianshan, Central Asia. Journal of Earth Science, 25(2):371-378. doi: 10.1007/s12583-014-0427-5
    [24] Xu Min, Ye Baisheng, Zhao Qiudong et al., 2013. Spatiotemporal Change Of Water Reserves in the Tianshan Mountains, Xinjiang Based on GRACE. Arid Zone Research, 30(3):404-411.doi:10.13866/j.azr.2013.03.003 (in Chinese)
    [25] Xu Min, Zhang Shiqiang, Wang Jian et al., 2014. Temporal and spatial patterns of water storage change of Qilian Mountains in recent 8 years based on GRACE. Arid Land Geography, 37(3):458-467. doi:10.13826/j.cnki.cn65-1103/x.2014.03.006 (in Chinese)
    [26] Yamamoto K, Fukuda Y, Nakaegawa T et al., 2007. Landwater variation in four major river basins of the Indochina peninsula as revealed by GRACE. Earth, Planets and Space, 59(4):193-200. doi: 10.1186/BF03353095
    [27] Yu Y T, Yang T B, Li J J et al., 2006. Millennial-scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology, 233(1-2):149-162. doi:10. 1016/j.palaeo.2005.09.008
    [28] Zhang Guanghui, Liu Shaoyu, Zhang Cuiyun et al., 2004. Evolution of groundwater circulation in the Heihe River drainage area. Chinese Geology, 31(3):289-293. doi:10.3969/j.issn. 1000-3657.2004.03.008 (in Chinese)
    [29] Zhang Z Z, Chao B F, Chen J L et al., 2015. Terrestrial water storage anomalies of Yangtze River Basin droughts observed by GRACE and connections with ENSO. Global and Planetary Change, 126:35-45. doi:10.1016/j.gloplacha.2015.01. 002
  • [1] Yufei HUANG, Chunyan LU, Yifan LEI, Yue SU, Yanlin SU, Zili WANG.  Spatio-temporal Variations of Temperature and Precipitation During 1951–2019 in Arid and Semiarid Region, China . Chinese Geographical Science, 2022, 32(2): 285-301. doi: 10.1007/s11769-022-1262-8
    [2] Lanhui ZHANG, Chansheng HE, Wei TIAN, Yi ZHU.  Evaluation of Precipitation Datasets from TRMM Satellite and Downscaled Reanalysis Products with Bias-correction in Middle Qilian Mountain, China . Chinese Geographical Science, 2021, 31(3): 474-490. doi: 10.1007/s11769-021-1205-9
    [3] WANG Liwei, ZHANG Mingjun, WANG Shengjie, Athanassios A. ARGIRIOU, WANG Gaofei, Vasileios SALAMALIKIS, SHI Mengyu, JIAO Rong.  Stable Isotope Signatures and Moisture Transport of a Typical Heavy Pre-cipitation Case in the Southern Tianshan Mountains . Chinese Geographical Science, 2020, 30(1): 180-188. doi: 10.1007/s11769-019-1091-6
    [4] HE Binbin, SHENG Yu, CAO Wei, WU Jichun.  Characteristics of Climate Change in Northern Xinjiang in 1961-2017, China . Chinese Geographical Science, 2020, 30(2): 249-265. doi: 10.1007/s11769-020-1104-5
    [5] LI Yungang, ZHANG Yueyuan, HE Daming, LUO Xian, JI Xuan.  Spatial Downscaling of the Tropical Rainfall Measuring Mission Pre-cipitation Using Geographically Weighted Regression Kriging over the Lancang River Basin, China . Chinese Geographical Science, 2019, 20(3): 446-462. doi: 10.1007/s11769-019-1033-3
    [6] CAO Yingqiu, XU Li, ZHANG Zhen, CHEN Zhi, HE Nianpeng.  Soil Microbial Metabolic Quotient in Inner Mongolian Grasslands: Patterns and Influence Factors . Chinese Geographical Science, 2019, 29(6): 1001-1010. doi: 10.1007/s11769-019-1084-5
    [7] SONG Xueqian, DENG Wei, LIU Ying, ZHAO Chen, WAN Jiangjun.  Residents' Satisfaction with Public Services in Mountainous Areas: An Empirical Study of Southwestern Sichuan Province, China . Chinese Geographical Science, 2017, 27(2): 311-324. doi: 10.1007/s11769-017-0865-y
    [8] LI Qian, ZHU Qing, ZHENG Jinsen, LIAO Kaihua, YANG Guishan.  Soil Moisture Response to Rainfall in Forestland and Vegetable Plot in Taihu Lake Basin, China . Chinese Geographical Science, 2015, 25(4): 426-437. doi: 10.1007/s11769-014-0715-0
    [9] XIONG Dingpeng, SHI Peili, SUN Yinliang, WU Jianshuang, ZHANG Xianzhou.  Effects of Grazing Exclusion on Plant Productivity and Soil Carbon, Nitrogen Storage in Alpine Meadows in Northern Tibet, China . Chinese Geographical Science, 2014, 0(4): 488-498. doi: 10.1007/s11769-014-0697-y
    [10] XU Yingying, YAN Baixing, LUAN Zhaoqing, ZHU Hui, WANG Lixia.  Application of Stable Isotope Tracing Technologies in Identification of Transformation among Waters in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2013, 23(4): 435-444. doi: 10.1007/s11769-012-0578-1
    [11] NING Baoying, YANG Xiaomei, CHANG Li.  Changes of Temperature and Precipitation Extremes in Hengduan Mountains, Qinghai-Tibet Plateau in 1961–2008 . Chinese Geographical Science, 2012, 22(4): 422-436.
    [12] JIANG Dejuan LI Zhi WANG Qiuxian.  Trends in temperature and precipitation extremes over Circum-Bohai-Sea region during 1961-2008 . Chinese Geographical Science, 2012, 22(1): 75-87.
    [13] WU Jinkui, DING Yongjian, YE Baisheng, YANG Qiyue, HOU Dianjiong, XUE Liyang.  Stable Isotopes in Precipitation in Xilin River Basin, Northern China and Their Implications . Chinese Geographical Science, 2012, 22(5): 531-540.
    [14] XU Jianhua, CHEN Yaning, JI Minhe, LU Feng.  Climate Change and Its Effects on Runoff of Kaidu River, Xinjiang, China:A Multiple Time-scale Analysis . Chinese Geographical Science, 2008, 18(4): 331-339. doi: 10.1007/s11769-008-0331-y
    [15] CHEN Liqun, LIU Changming, LI Yanping, WANG Guoqiang.  Impacts of Climatic Factors on Runoff Coefficients in Source Regions of the Huanghe River . Chinese Geographical Science, 2007, 17(1): 47-55. doi: 10.1007/s11769-007-0047-4
    [16] YAN Min-hua, DENG Wei, CHEN Pan-qin.  RECENT TRENDS OF TEMPERATURE AND PRECIPITATION DISTURBED BY LARGE-SCALE RECLAMATION IN THE SANGJIANG PLAIN OF CHINA . Chinese Geographical Science, 2003, 13(4): 317-321.
    [17] FANG Feng-man, WANG Qi-chao, MA Zhuang-wei, LIU Ru-hai, CAO Yu-hong.  ESTIMATION OF ATMOSPHERIC INPUT OF MERCURY TO SOUTH LAKE AND JINGYUE POOL . Chinese Geographical Science, 2002, 12(1): 86-89.
    [18] 王学全, 高前兆.  THE PRECIPITATION INFILTRATION AND RUNOFF RECHARGING EXPERIMENT OBSERVATION IN THE TAKLIMAKAN DESERT . Chinese Geographical Science, 1999, 9(3): 284-288.
    [19] 章新平, 施雅风, 姚檀栋.  RELATION BETWEEN δ18O IN ATMOSPHERIC PRECIPITATION AND TEMPERATURE AND PRECIPITATION . Chinese Geographical Science, 1995, 5(4): 289-299.
    [20] 杨远东.  AN ANALYSIS OF THREE ELEMENTS OF WATER BALANCE IN THE CHANGJIANG RIVER BASIN . Chinese Geographical Science, 1991, 1(3): 197-211.
  • 加载中
计量
  • 文章访问数:  257
  • HTML全文浏览量:  6
  • PDF下载量:  463
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-09
  • 修回日期:  2017-05-04
  • 刊出日期:  2017-12-27

Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE

doi: 10.1007/s11769-017-0914-6
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41371419), Key Program for International Science and Technique Cooperation Projects of China (No. 2010DFA92720-04)
    通讯作者: BAO Anming.E-mail:baoam@ms.xjb.ac.cn

摘要: The mountainous areas of Central Asia provide substantial water resources, and studying change in water storage and the impacts of precipitation and snow cover in the mountain ranges of Central Asia is of the greatest importance for understanding regional water shortages and the main factors. Data from the GRACE (Gravity Recovery and Climate Experiment) satellites, precipitation products and snow-covered area data were used to analyze the spatio-temporal characteristics of water storage changes and the effects of precipitation and snow cover from April 2002 to December 2013. The results were computed for each mountain ranges, and the following conclusions were drawn. The water storage in the mountainous areas of Central Asia as a whole increases in summer and winter, whereas it decreases in autumn. The water storage is affected by precipitation to some extent and some areas exhibit hysteresis. The area of positive water storage changes moves from west to east over the course of the year. The water storage declined during the period 2002-2004. It then returned to a higher level in 2005-2006 and featured lower levels in 2007-2009 Subsequently, the water storage increased gradually from 2010 to 2013. The Eastern Tianshan Mountains and Western Tianshan Mountain subzones examined in this study display similar tendencies, and the trends observed in the Karakorum Mountains and the Kunlun Mountains are also similar. However, the Eastern Tianshan Mountains and Western Tianshan Mountains were influenced by precipitation to a greater degree than the latter two ranges. The water storage in Qilian Mountains showed a pronounced increasing trend, and this range is the most strongly affected by precipitation. Based on an analysis of all investigated subzones, precipitation has the greatest influence on total water storage relative to the snow covered area in some areas of Central Asia. The results obtained from this study will be of value for scientists studying the mechanisms that influence changes in water storage in Central Asia.

English Abstract

ZHANG Pengfei, CHEN Xi, BAO Anming, LIU Tie, Felix NDAYISABA. Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE[J]. 中国地理科学, 2017, 27(6): 918-933. doi: 10.1007/s11769-017-0914-6
引用本文: ZHANG Pengfei, CHEN Xi, BAO Anming, LIU Tie, Felix NDAYISABA. Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE[J]. 中国地理科学, 2017, 27(6): 918-933. doi: 10.1007/s11769-017-0914-6
ZHANG Pengfei, CHEN Xi, BAO Anming, LIU Tie, Felix NDAYISABA. Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE[J]. Chinese Geographical Science, 2017, 27(6): 918-933. doi: 10.1007/s11769-017-0914-6
Citation: ZHANG Pengfei, CHEN Xi, BAO Anming, LIU Tie, Felix NDAYISABA. Assessing Spatio-temporal Characteristics of Water Storage Changes in the Mountainous Areas of Central Asia Based on GRACE[J]. Chinese Geographical Science, 2017, 27(6): 918-933. doi: 10.1007/s11769-017-0914-6
参考文献 (29)

目录

    /

    返回文章
    返回