留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors

YE Xuchun XU Chong-Yu LI Yunliang LI Xianghu ZHANG Qi

YE Xuchun, XU Chong-Yu, LI Yunliang, LI Xianghu, ZHANG Qi. Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors[J]. 中国地理科学, 2017, 27(2): 325-336. doi: 10.1007/s11769-017-0866-x
引用本文: YE Xuchun, XU Chong-Yu, LI Yunliang, LI Xianghu, ZHANG Qi. Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors[J]. 中国地理科学, 2017, 27(2): 325-336. doi: 10.1007/s11769-017-0866-x
YE Xuchun, XU Chong-Yu, LI Yunliang, LI Xianghu, ZHANG Qi. Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors[J]. Chinese Geographical Science, 2017, 27(2): 325-336. doi: 10.1007/s11769-017-0866-x
Citation: YE Xuchun, XU Chong-Yu, LI Yunliang, LI Xianghu, ZHANG Qi. Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors[J]. Chinese Geographical Science, 2017, 27(2): 325-336. doi: 10.1007/s11769-017-0866-x

Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors

doi: 10.1007/s11769-017-0866-x
基金项目: Under the auspices of the Fund of Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (No. WSGS2015003), Fundamental Research Funds for the Central Universities (No. XDJK2016C093), National Natural Science Foundation of China (No. 41571023)
详细信息
    通讯作者:

    YE Xuchun.E-mail:yxch2500@163.com

Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors

Funds: Under the auspices of the Fund of Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (No. WSGS2015003), Fundamental Research Funds for the Central Universities (No. XDJK2016C093), National Natural Science Foundation of China (No. 41571023)
More Information
    Corresponding author: 10.1007/s11769-017-0866-x
  • 摘要: As one of the fastest developing regions in China, the middle-lower Yangtze River (MLYR) is vulnerable to floods and droughts. With obtained time series of annual highest water level (HWL), annual lowest water level (LWL) and the corresponding river discharges from three gauging stations in MLYR that covering the period 1987-2011, the current study evaluated the change characteristics of annual extreme water levels and the correlation with river discharges by using the methods of trend test, Mann-Whitney-Pettitt (MWP) test and double mass analysis. Major result indicated a decreasing/increasing trend for annual HWL/LWL of all stations in MLYR during the study period. A change point in 1999 was identified for annual HWL at the Hankou and Datong stations. The year 2006 was found to be the critical year that the relationship between annual extreme water levels and river discharges changed in the MLYR. With contrast to annual LWL in MLYR, further investigation revealed that the change characteristics of annual HWL were highly consistent with regional precipitation in the Yangtze River Basin, while the linkage with Three Gorges Dam (TGD) operation is not strong. Our observation also pointed out that the effect of serious down cutting of the riverbed and the enlargement of the cross-section area during the initial period of TGD operation caused the downward trend of the relationship between annual LWL and river discharge. Whereas, the relatively raised river water level before the flood season due to TGD regulation since 2006 explained for the changing upward trend of the relationship between annual HWL and river discharge.
  • [1] Alexander L V, Zhang X, Peterson T C et al., 2006. Global ob-served changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research Atmospheres, 111(D5):1042-1063. doi: 10.1029/2005JD006290
    [2] Bond N R, Lake P S, Arthington A H, 2008. The impacts of drought on fresh water ecosystems:an Australian perspective. Hydrobiologia, 600(1):3-16. doi: 10.1007/s10750-008-9326-z
    [3] Chen H, Guo S L, Xu C-Y et al., 2007. Historical temporal trends of hydroclimatic variables and runoff response to climate var-iability and their relevance in water resource management in the Hanjiang basin. Journal of Hydrology, 344(3):171-184. doi: 10.1016/j.jhydrol.2007.06.034
    [4] Chen Z Y, Wang Z H, Finlayson B et al., 2011. Implications of flow control by the Three Gorges Dam on sediment and channel dynamics of the middle Yangtze (Changjiang) River, China. Geology, 38 (11):1043-1046. doi: 10.1130/G31271.1
    [5] Cluis D A, 1983. Visual techniques for the detection of water quality trends:double-mass curves and CUSUM functions. Environmental Monitoring and Assessment, 3(2):173-184. doi: 10.1007/BF00398846
    [6] Coumou D, Rahmstor F S, 2012. A decade of weather extremes. Nature Climate Change, 2(7):491-496. doi:10.1038/nclimate 1452
    [7] Dai Z, Liu J T, 2013. Impacts of large dams on downstream fluvial sedimentation:An example of the Three Gorges Dam (TGD) on the Changjiang (Yangtze River). Journal of Hydrology, 480(4):10-18. doi: 10.1016/j.jhydrol.2012.12.003
    [8] Easterling D R, Meehl G A, Parmesan C et al., 2000. Climate extremes:observations, modeling, and impacts. Science, 289(5487):2068-2074. doi: 10.1126/science.289.5487.2068
    [9] Fang H W, Han D, He G J et al., 2012. Flood management selec-tions for the Yangtze River midstream after the Three Gorges Project operation. Journal of Hydrology, 432-433(8):1-11. doi: 10.1016/j.jhydrol.2012.01.042
    [10] Feng Yawen, Ren Guoyu, Liu Zhiyu et al., 2013. Rainfall and runoff trends in the Upper Yangtze River. Resources Science, 35(6):1268-1276. (in Chinese)
    [11] Guo H, Hu Q, Zhang Q et al., 2012. Effects of the Three Gorges Dam on Yangtze River flow and river interaction with Poyang Lake, China:2003-2008. Journal of Hydrology, 416-417:19-27. doi: 10.1016/j.jhydrol.2011.11.027
    [12] Hu Q, Feng S, 2001. Southward migration of centennial scale variations of drought/flood in eastern China and western United States. Journal of Climate, 14:1323-1328. doi:10. 1175/1520-0442(2001)014<1323:ASMOCS>2.0.CO;2
    [13] Huang Xiquan, 2009. Hydrology. Beijing:Higher Education Press, 130-165. (in Chinese)
    [14] IPCC, 2013. Climate Change 2013:the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Re-port of the Intergovernmental Panel on Climate Change. UK, Cambridge:Cambridge University Press.
    [15] Jiang Tong, Shi Yafeng, 2003. Global warming and its conse-quences in Yangtze River floods and damages. Advances in Earth Science, 18(2):277-284. (in Chinese)
    [16] Jiang T, Zhang Q, Zhu D M et al., 2006. Yangtze floods and droughts (China) and teleconnections with ENSO activities (1470-2003). Quaternary International, 144(1):29-37. doi: 10.1016/j.quaint.2005.05.010
    [17] Kahya E, Kalayci S. 2004. Trend analysis of streamflow in Turkey. Journal of Hydrology, 289(1):128-144. doi: 10.1016/j.jhydrol.2003.11.006
    [18] Kohler M A, 1949. On the use of double-mass analysis for testing the consistency of meteorological records and for making re-quired adjustments. Bulletin of the American Meteorological Society, 30:188-189.
    [19] Kundu S, Khare D, Mondal A et al., 2015 Analysis of spatial and temporal variation in rainfall trend of Madhya Pradesh, India (1901-2011). Environmental Earth Sciences, 73(12):8197-8216. doi: 10.1007/s12665-014-3978-y
    [20] Lai X J, Liang Q H, Huang Q et al., 2016. Numerical evaluation of flow regime changes induced by the Three Gorges Dam in the Middle Yangtze. Hydrology Research, in press. doi:10. 2166/nh.2016.158
    [21] Lai X, Jiang J, Yang G et al., 2014. Should the Three Gorges Dam be blamed for the extremely low water levels in the mid-dle-lower Yangtze River? Hydrological Processes, 28(1):150-160. doi: 10.1002/hyp.10077
    [22] Li F, Qin X, Xie Y et al., 2013. Physiological mechanisms for plant distribution pattern:responses to flooding and drought in three wetland plants from Dongting Lake, China. Limnology, 14(1):71-76. doi: 10.1007/s10201-012-0386-4
    [23] Li J, 2009. Scientists line up against dam that would alter protected wetlands. Science, 326(5952):508-509. doi: 10.1126/science.326_508
    [24] Li X H, Yao J, Li Y L et al., 2016. A modeling study of the influ-ences of Yangtze River and local catchment on the development of floods in Poyang Lake, China. Hydrology Research, in press. doi: 10.2166/nh.2016.198
    [25] Li Y L, Zhang Q, Werner A D et al., 2015. Investigating a complex lake-catchment-river system using artificial neural networks:Poyang Lake (China). Hydrology Research, 46(6):912-928. doi:10. 2166/nh.2015.150
    [26] Lin X D, Zhang Y L, Yao Z J et al., 2008. The trend on runoff variations in the Lhasa River Basin. Journal of Geographical Sciences, 18(1):95-106. doi: 10.1007/s11442-008-0095-4
    [27] Ma Xinping, Bai Hongying, Hou Qinlei et al., 2012. Runoff change of Bahe River basin in Qinling mountains and its in-fluencing factors. Resources Science, 34(7):1298-1305. (in Chinese)
    [28] Mao J Q, Zhang P P, Dai L Q et al., 2016. Optimal operation of a multi-reservoir system for environmental water demand of a river-connected lake. Hydrology Research, in press. doi:10. 2166/nh.2016.043
    [29] Mei X, Dai Z, Wei W et al., 2016. Dams induced stage-discharge relationship variations in the upper Yangtze River Basin. Hydrology Research, 47(1):157-170. doi: 10.2166/nh.2015.010
    [30] Milly P C, Wetherald R T, Dunne KA et al., 2002. Increasing risk of great floods in a changing climate. Nature, 415(6871):514-517. doi: 10.1038/415514a
    [31] Min Qian, Zhan Lasheng, 2012. Characteristics of low-water changes in Lake Poyang during 1952-2011. Journal of Lake Sciences, 24(5):675-678. (in Chinese)
    [32] Mu Xingmin, Chille Basang, Zhang Lu et al., 2007. Impact of soil conservation measures on runoff and sediment in Hekou-Longmen region of the Yellow River. Journal of Sediment Research, (2):36-41. (in Chinese)
    [33] Pettitt A N, 1979. A non-parametric approach to the change point problem. Applied Statistics, 28(2):126-135. doi: 10.2307/2346729
    [34] Searcy J K, Hardison C H, 1960. Double-mass Curves. U.S. Ge-ological Survey Water Supply Paper.1541-B.
    [35] Sen P K, 1968. Estimates of the regression coefficient based on Kendall's Tau. Journal of the American Statistical Association, 63:1379-1389. doi: 10.2307/2285891
    [36] Shankman D, Keim B D, Song J, 2006. Flood frequency in Chi-na's Poyang Lake region:trends and teleconnections. Interna-tional Journal of Climatology, 26(9):1255-1266. doi: 10.1002/joc.1307
    [37] Sun Z D, Huang Q, Opp C et al., 2012. Impacts and implications of major changes caused by the Three Gorges Dam in the middle reach of the Yangtze River, China. Water Resources Management, 26(12):3367-3378. doi: 10.1002/joc.1307
    [38] Villarini G, Serinaldi F, Smith AJ et al., 2009. On the stationarity of annual flood peaks in the continental United States during the 20th century. Water Resources Research, 45(8):W08417. doi: 10.1029/2008WR007645
    [39] Wang X L, Xu L G, Wan R R, 2016. Comparison on soil organic carbon within two typical wetland areas along the vegetation gradient of Poyang Lake, China. Hydrology Research, in press. doi: 10.2166/nh.2016.218
    [40] Wei Q, Sun C H, Wu G H et al., 2016. Haihe River discharge to Bohai Bay, North China:trends, climate, and human activities. Hydrology Research, in press. doi: 10.2166/nh.2016.142
    [41] Xu X L, Li Y L, Li X H, 2016. Evaluating the influence of water table depth on transpiration of two vegetation communities in a lake floodplain wetland. Hydrology Research, in press. doi: 10.2166/nh.2016.011
    [42] Yao J, Zhang Q, Li Y L, 2016. Hydrological evidence and causes of seasonal low water levels in a large river-lake system:Po-yang Lake, China. Hydrology Research, in press. doi:10. 2166/nh.2016.044
    [43] Ye X C, Li X H, Liu J et al., 2014. Variation of reference evapo-transpiration and its contributing climatic factors in the Poyang Lake catchment, China. Hydrological Processes, 28:6151-6162. doi: 10.1002/hyp.10117
    [44] Ye X C, Zhang Q, Liu J et al., 2013. Distinguishing the relative impacts of climate change and human activities on variation of streamflow in the Poyang Lake catchment, China. Journal of Hydrology, 494:83-95. doi: 10.1016/j.jhydrol.2013.04.036
    [45] Yin Y X, Xu C-Y, Chen H S et al., 2016. Trend and concentration characteristics of precipitation and the related climatic tele-connections from 1982 to 2010 in the Beas River basin, India. Global and Planetary Change, 145:116-129. doi:10.1016/j. gloplacha.2016.08.011
    [46] Yue S, Pilon P, 2003. Interaction between deterministic trend and autoregressive process. Water Resources Research, 39(4), 1077. doi: 10.1029/2001WR001210.
    [47] Zhang Q, Li L, Wang Y G et al., 2012. Has the Three-Gorges Dam made the Poyang Lake wetlands wetter and drier? Geophysical Research Letters, 39(20):L20402. doi: 10.1029/2012GL053431
    [48] Zhang Q, Liu C L, Xu C-Y et al., 2006. Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River Basin, China. Journal of Hydrology, 324(1):255-265. doi: 10.1016/j.jhydrol.2005.09.023
    [49] Zhang Q, Ye X C, Werner A D et al., 2014. An investigation of enhanced recessions in Poyang Lake:Comparison of Yangtze River and local catchment impacts. Journal of Hydrology, 517:425-434. doi: 10.1016/j.jhydrol.2014.05.051
    [50] Zhang S R, Lu X X, 2009. Hydrological responses to precipitation variation and diverse human activities in a mountainous tributary of the lower Xijiang, China. Catena, 77(2):130-142. doi: 10.1016/j.catena.2008.09.001
    [51] Zhang Xinbao, Wen Anbang, 2002. Variations of sediment in upper stream of Yangtze River and its tributary. Journal of Hydraulic Engineering, (4):56-59. (in Chinese)
    [52] Zhang Zheng, Yang Shilun, Li Peng, 2010. Quantifying the In-fluence of Water Impoundment Phases I and II of the Three Gorges Reservoir on Downstream Suspended Sediment Flux. Acta Geographica Sinica, 65(5):623-631. (in Chinese)
  • [1] Yan LU, Lyuyi LIU, Fen QIN, Jiayao WANG, Jianzhong LIU, Yingjie LI, Luwen WAN.  Total Nitrogen and Total Phosphorus Pollution Reshaped the Relationship Between Water Supply and Demand in the Huaihe River Watershed, China . Chinese Geographical Science, 2023, 33(3): 512-530. doi: 10.1007/s11769-023-1350-4
    [2] Zheng GUO, Sophia Shuang CHEN, Shimou YAO, Charles MKUMBO Anna.  Does Foreign Direct Investment Affect SO2 Emissions in the Yangtze River Delta? A Spatial Econometric Analysis . Chinese Geographical Science, 2021, 31(3): 400-412. doi: 10.1007/s11769-021-1197-5
    [3] YE Lei, OU Xiangjun.  Spatial-temporal Analysis of Daily Air Quality Index in the Yangtze River Delta Region of China During 2014 and 2016 . Chinese Geographical Science, 2019, 20(3): 382-393. doi: 10.1007/s11769-019-1036-0
    [4] WAN Rongrong, YANG Guishan, DAI Xue, ZHANG Yanhui, LI Bing.  Water Security-based Hydrological Regime Assessment Method for Lakes with Extreme Seasonal Water Level Fluctuations: A Case Study of Poyang Lake, China . Chinese Geographical Science, 2018, 28(3): 456-469. doi: 10.1007/s11769-018-0958-2
    [5] XIA Shaoxia, LIU Yu, CHEN Bin, JIA Yifei, ZHANG Huan, LIU Guanhua, YU Xiubo.  Effect of Water Level Fluctuations on Wintering Goose Abundance in Poyang Lake Wetlands of China . Chinese Geographical Science, 2017, 27(2): 248-258. doi: 10.1007/s11769-016-0840-z
    [6] SHA Yukun, LI Weipeng, FAN Jihui, CHENG Genwei.  Determining Critical Support Discharge of a Riverhead and River Network Analysis: Case Studies of Lhasa River and Nyangqu River . Chinese Geographical Science, 2016, 26(4): 456-465. doi: 10.1007/s11769-015-0760-3
    [7] WANG Chunling, ZHAO Hongyan, WANG Guoping.  Vegetation Development and Water Level Changes in Shenjiadian Peatland in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2015, 25(4): 451-461. doi: 10.1007/s11769-015-0768-8
    [8] YIN Yixing, XU Youpeng, CHEN Ying.  Relationship Between Changes of River-lake Networks and Water Levels in Typical Regions of Taihu Lake Basin, China . Chinese Geographical Science, 2012, 22(6): 673-682.
    [9] LIU Feng, CHEN Shenliang, PENG Jun, CHEN Guangquan.  Temporal Variations of Water Discharge and Sediment Load of Huanghe River, China . Chinese Geographical Science, 2012, 22(5): 507-521.
    [10] GUO Lei, MA Keming.  Seasonal Dynamics of Nitrogen and Phosphorus in Water and Sediment of A Multi-level Ditch System in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2011, 21(4): 437-445.
    [11] CUI Baoshan, HUA Yanyan, WANG Chongfang, LIAO Xiaolin, TAN Xuejie, TAO Wendong.  Estimation of Ecological Water Requirements Based on Habitat Response to Water Level in Huanghe River Delta, China . Chinese Geographical Science, 2010, 20(4): 318-329. doi: 10.1007/s11769-010-0404-6
    [12] WANG Jianhua, LU Xianguo, TIAN Jinghan, JIANG Ming.  Fuzzy Synthetic Evaluation of Water Quality of Naoli River Using Parameter Correlation Analysis . Chinese Geographical Science, 2008, 18(4): 361-368. doi: 10.1007/s11769-008-0361-5
    [13] ZHONG Yun, YAN Xiaopei.  Relationship Between Producer Services Developing Level and Urban Hierarchy——A Case Study of Zhujiang River Delta . Chinese Geographical Science, 2008, 18(1): 1-8. doi: 10.1007/s11769-008-0001-0
    [14] ZHANG Ji-shi, ZHANG Yong-qiu, PU Rui-feng, CHEN Ren-sheng, CHENG Zhong-shan, WANG Ming-quan.  SAFETY ANALYSIS OF WATER RESOURCES AND ECO-ENVIRONMENT IN SHIYANG RIVER BASIN . Chinese Geographical Science, 2005, 15(3): 238-244.
    [15] 许朋柱.  IMPACT OF FUTURE SEA LEVEL RISE ON FLOOD AND WATER LOGGING DISASTERS IN LIXIAHE REGION . Chinese Geographical Science, 1996, 6(1): 35-48.
    [16] 曲耀光, 骆鸿珍.  WATER RESOURCES TRANSFORMATION AND WATER QUALITY VARIATION IN THE URUMQI RIVER BASIN . Chinese Geographical Science, 1995, 5(4): 325-335.
    [17] 彭敏, 陈桂琛, 周立华.  RELATIONSHIP BETWEEN QINGHAI LAKE LEVEL DESCENDING AND ARTIFICIAL WATER-CONSUMPTION . Chinese Geographical Science, 1995, 5(1): 44-55.
    [18] 曾昭璇, 刘南威, 胡男, 丘世钧, 黄山, 李平日, 方国祥, 黄光庆, 祝功武.  SEA LEVEL RISE OF THE ZHUJIANG RIVER DELTA AND NEOTECTONICS . Chinese Geographical Science, 1993, 3(1): 44-50.
    [19] 杨桂山.  IMPACTS OF FUTURE SEA LEVEL RISE ON SALT WATER INTRUSION IN THE CHANGJIANG RIVER ESTUARY . Chinese Geographical Science, 1992, 2(1): 30-41.
    [20] 杨远东.  AN ANALYSIS OF THREE ELEMENTS OF WATER BALANCE IN THE CHANGJIANG RIVER BASIN . Chinese Geographical Science, 1991, 1(3): 197-211.
  • 加载中
计量
  • 文章访问数:  304
  • HTML全文浏览量:  17
  • PDF下载量:  804
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-06
  • 修回日期:  2016-11-09
  • 刊出日期:  2017-04-27

Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors

doi: 10.1007/s11769-017-0866-x
    基金项目:  Under the auspices of the Fund of Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (No. WSGS2015003), Fundamental Research Funds for the Central Universities (No. XDJK2016C093), National Natural Science Foundation of China (No. 41571023)
    通讯作者: YE Xuchun.E-mail:yxch2500@163.com

摘要: As one of the fastest developing regions in China, the middle-lower Yangtze River (MLYR) is vulnerable to floods and droughts. With obtained time series of annual highest water level (HWL), annual lowest water level (LWL) and the corresponding river discharges from three gauging stations in MLYR that covering the period 1987-2011, the current study evaluated the change characteristics of annual extreme water levels and the correlation with river discharges by using the methods of trend test, Mann-Whitney-Pettitt (MWP) test and double mass analysis. Major result indicated a decreasing/increasing trend for annual HWL/LWL of all stations in MLYR during the study period. A change point in 1999 was identified for annual HWL at the Hankou and Datong stations. The year 2006 was found to be the critical year that the relationship between annual extreme water levels and river discharges changed in the MLYR. With contrast to annual LWL in MLYR, further investigation revealed that the change characteristics of annual HWL were highly consistent with regional precipitation in the Yangtze River Basin, while the linkage with Three Gorges Dam (TGD) operation is not strong. Our observation also pointed out that the effect of serious down cutting of the riverbed and the enlargement of the cross-section area during the initial period of TGD operation caused the downward trend of the relationship between annual LWL and river discharge. Whereas, the relatively raised river water level before the flood season due to TGD regulation since 2006 explained for the changing upward trend of the relationship between annual HWL and river discharge.

English Abstract

YE Xuchun, XU Chong-Yu, LI Yunliang, LI Xianghu, ZHANG Qi. Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors[J]. 中国地理科学, 2017, 27(2): 325-336. doi: 10.1007/s11769-017-0866-x
引用本文: YE Xuchun, XU Chong-Yu, LI Yunliang, LI Xianghu, ZHANG Qi. Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors[J]. 中国地理科学, 2017, 27(2): 325-336. doi: 10.1007/s11769-017-0866-x
YE Xuchun, XU Chong-Yu, LI Yunliang, LI Xianghu, ZHANG Qi. Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors[J]. Chinese Geographical Science, 2017, 27(2): 325-336. doi: 10.1007/s11769-017-0866-x
Citation: YE Xuchun, XU Chong-Yu, LI Yunliang, LI Xianghu, ZHANG Qi. Change of Annual Extreme Water Levels and Correlation with River Discharges in the Middle-lower Yangtze River: Characteristics and Possible Affecting Factors[J]. Chinese Geographical Science, 2017, 27(2): 325-336. doi: 10.1007/s11769-017-0866-x
参考文献 (52)

目录

    /

    返回文章
    返回