留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India

Kumar Singh CHANDAN Bhaskar Katpatal YASHWANT

Kumar Singh CHANDAN, Bhaskar Katpatal YASHWANT. Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India[J]. 中国地理科学, 2017, 27(2): 201-215. doi: 10.1007/s11769-017-0859-9
引用本文: Kumar Singh CHANDAN, Bhaskar Katpatal YASHWANT. Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India[J]. 中国地理科学, 2017, 27(2): 201-215. doi: 10.1007/s11769-017-0859-9
Kumar Singh CHANDAN, Bhaskar Katpatal YASHWANT. Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India[J]. Chinese Geographical Science, 2017, 27(2): 201-215. doi: 10.1007/s11769-017-0859-9
Citation: Kumar Singh CHANDAN, Bhaskar Katpatal YASHWANT. Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India[J]. Chinese Geographical Science, 2017, 27(2): 201-215. doi: 10.1007/s11769-017-0859-9

Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India

doi: 10.1007/s11769-017-0859-9
基金项目: Under the auspices of the Visvesvaraya National Institute of Technology (Nagpur), Centrally Funded Technical Institution Under the Ministry of Human Resource Development (No. l7-2/2014-TS.I), Department of Science and Technology, Government of India (No. SR/S9/Z-09/2012)
详细信息
    通讯作者:

    Kumar Singh CHANDAN.E-mail:singhchandan44@gmail.com

Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India

Funds: Under the auspices of the Visvesvaraya National Institute of Technology (Nagpur), Centrally Funded Technical Institution Under the Ministry of Human Resource Development (No. l7-2/2014-TS.I), Department of Science and Technology, Government of India (No. SR/S9/Z-09/2012)
More Information
    Corresponding author: 10.1007/s11769-017-0859-9
  • 摘要: Groundwater is one of the most important resources, its monitoring and optimized management has now become the priority to satisfy the demand of rapidly increasing population. In many developing countries, optimized groundwater level monitoring networks are rarely designed to build up a strong groundwater level data base, and to reduce operation time and cost. The paper presents application of geostatistical method to optimize existing network of observation wells for 18 sub-watersheds within the Wainganga Sub-basin located in the central part of India. The average groundwater level fluctuation (GWLF) from 37 observation wells is compared with parameters like lineament density, recharge, density of irrigation wells, land use and hydrogeology (LiRDLH) of Wainganga Sub-basin and analyzed stochastically in Geographic Information System (GIS) environment using simple, ordinary, disjunctive and universal kriging methods. Semivariogram analyses have been performed separately for all kriging methods to fit the best theoretical model with experimental model. Results from gaussian, spherical, exponential and circular theoretical models were compared with those of experimental models obtained from the groundwater level data. Spatial analyses conclude that the exponential semivariogram model obtained from ordinary kriging gives the best fit model. Study demonstrates that ordinary kriging gives the optimal solution and additional number of observation wells can be added utilizing the error variance for optimal design of groundwater level monitoring networks. This study describes the use of Geostatistics methods in GIS to predict the groundwater level and upgrade groundwater level monitoring networks from the randomly distributed observation wells considering multiple parameters such as GWLF and LiRDLH. The method proposed in the present study is observed to be an efficient method for selecting observation well locations in a complex geological set up. The study concludes that minimum 82 wells are required for proper monitoring of groundwater level in the study area.
  • [1] Ahmadi S H, Sedghamiz A, 2007. Geostatistical analysis of spatial and temporal variations of groundwater level. Environmental Monitoring Assessment, 129(1):277-294. doi: 10.1007/s10661-006-9361-z
    [2] Ahmadi S H, Sedghamiz A, 2008. Application and evaluation of kriging and cokriging methods on groundwater depth mapping. Environmental Monitoring Assessment, 138(1):357-368. doi: 10.1007/s10661-007-9803-2
    [3] Caers, J. 2005. Petroleum Geostatistics. Texas:Society of Petro-leum Engineers.
    [4] Chao Y, Qian H, Fang Y et al., 2011. Optimum design of groundwater level monitoring network in Yinchuan plain. Water Resource and Environmental Protection, 1:278-281. doi: 10.1109/ISWREP.2011.5892999
    [5] Cressie N A C, 1993. Statistics for Spatial Data. New York:John Wiley & Sons.
    [6] Davis J C, 2002. Statistics and Data Analysis in Geology. New York:John Wiley & Sons.
    [7] Emmanuel G, Clayton V D, 2001. Teacher's aide variogram in-terpretation and modeling. Mathematical Geology, 33(4):507-534. doi: 10.1023/A:1011093014141
    [8] ESRI, 2013. Desktop Help 10.0. The Geostatistical Workflow ArcGIS. Environmental Systems Research Institute. http://resources.arcgis.com/en/help/. Cited 27 Aug 2015.
    [9] Fenta A A, Kifle A, Gebreyohannes T et al., 2015. Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya valley, northern Ethiopia. Hydrogeology Journal, 23(1):195-206. doi: 10.1007/s10040-014-1198-x
    [10] Goovaerts P, 1997. Geostatistics for Natural Resources Evalua-tion. New York:Oxford University Press.
    [11] Gorai A K, Kumar S, 2013. Spatial distribution analysis of groundwater quality index using GIS:a case study of Ranchi Municipal Corporation (RMC) area. Geoinformatics and Geo-statistics:An Overview, 1(2):1-11. doi:10.4172/2327-4581. 1000105
    [12] GSDA and CGWB, 2014. Computation of Groundwater Re-sources Estimation in the State. Report on the dynamic ground water resources of Maharashtra. Central Ground Water Board and Groundwater Surveys & Development Agency. http://gsda.maharashtra.gov.in/GWSpdf/Talukawise_GWA2011-12.pdf. Cited 21 Sept 2015.
    [13] GSI, 2009. Briefing book. Report on Thematic Mapping of Dec-can Traps in Inter-operational Areas Falling in Parts of Am-ravati and Nagpur Districts of Maharashtra, Chhindwara and Betul Districts of Madhya Pradesh. Geological Survey of India. https://www.gsi.gov.in/webcenter/portal/OCBIS.
    [14] Gundogdu K S, Guney I, 2007. Spatial analyses of groundwater levels using universal kriging. Journal of Earth System Science, 116(1):49-55. doi: 10.1007/s12040-007-0006-6
    [15] Ibtissem T, Moncef Z, Hamed B D, 2013. A geostatistical approach for groundwater head monitoring network optimisation:case of the Sfax superficial aquifer (Tunisia). Water and Environment Journal, 27(3):362-372. doi: 10.1111/j.1747-6593.2012.00352.x
    [16] IGRAC, 2006. Groundwater monitoring-general aspects and design procedure. Guideline on Groundwater Monitoring for General Reference Purposes. International Groundwater Re-sources Assessment Centre. http://www.un-igrac.org/download/file/fid/278.Cited26Aug2015.
    [17] Isaaks E, Srivastava R M, 1989. An Introduction to Applied Geo-statistics. New York:Oxford University Press.
    [18] Jousma G, Roelofsen F J, 2004. Groundwater level monitoring. World-wide Inventory on Groundwater Monitoring. Interna-tional Groundwater Resources Assessment Centre. https://www.un-igrac.org/resource/world-wide-inventory-groundwater-monitoring.
    [19] Júnez-Ferreira H E, Herrera G S, 2013. A geostatistical method-ology for the optimal design of space-time hydraulic head monitoring networks and its application to the Valle de Queré-taro aquifer. Environmental Monitoring Assessment, 185(4):3527-3549. doi: 10.1007/s10661-012-2808-5
    [20] Kambhammettu B V N P, Allena P, King J P, 2011. Application and evaluation of universal kriging for optimal contouring of groundwater levels. Journal of Earth System Science, 120(3):413-422. doi: 10.1007/s12040-011-0075-4
    [21] Kumar S, Sondhi S K, Phogat V, 2005. Network design for groundwater level monitoring in upper Bari Doab canal tract, Punjab, India. Irrigation and Drainage, 54(4):431-442. doi: 10.1002/ird.194
    [22] Kumar V, Remadevi, 2006. Kriging of groundwater levels:a case study. Journal of Spatial Hydrology, 6(1):81-94.
    [23] Matheron G, 1965. Les Variables Regionaliseesetleur Estimation:une Application de la The'orie des Fonctions Ale'atoires aux Sciences de la Nature. Paris:Massion.
    [24] Nag S K, Ghosh P, 2012. Delineation of groundwater potential zone in Chhatna Block, Bankura District, West Bengal, India using remote sensing and GIS techniques. Environmental Earth Sciences, 54(4):2115-2127. doi: 10.1007/s12665-012-1713-0
    [25] Prakash M R, Singh V S, 2000. Network design for groundwater monitoring:a case study. Environmental Geology, 39(6):628-632. doi: 10.1007/s002540050474
    [26] Preeja K R, Sabu J, Jobin T et al., 2011. Identification of groundwater potential zones of a tropical river basin (Kerala, India) using remote sensing and GIS techniques. Journal of the Indian Society of Remote Sensing, 39(1):83-94. doi 10.1007/s12524-011-0075-5
    [27] Ripley B D, 2004. Spatial Statistics. London:Wiley IEEE.
    [28] Singh C K, Katpatal Y B, 2015. Effect of global climate change on groundwater resources using geostatistics and linear regression method. Climate Change, 1(4):491-497.
    [29] Sun Y, Kang S, Li F et al., 2009. Comparison of interpolation methods for depth to groundwater and its temporal and spatial variations in the Minqin oasis of northwest China. Environ-mental Modelling & Software, 24(10):1163-1170. doi:10. 1016/j.envsoft.2009.03.009
    [30] Theodossiou N, Latinopoulos P, 2006. Evaluation and optimisation of groundwater observation networks using the kriging methodology. Environmental Modeling and Software, 21(7):991-1000. doi: 10.1016/j.envsoft.2005.05.001
    [31] Thomas T, Jaiswal R K, Ravi G et al., 2009. Development of a rainfall-recharge relationship for a fractured basaltic aquifer in central India. Hydrogeology Journal, 23(15):3101-3119. doi: 10.1007/s11269-009-9425-2
    [32] UNESCO, 1998. Framework for groundwater monitoring in semi-arid regions. Monitoring for Groundwater Management in Semi-arid Regions. UNESCO. http://unesdoc.unesco.org/images/0011/001142/114297Eb.pdf.
    [33] Varouchakis Ε A, Hristopulos D T, 2013. Comparison of stochas-tic and deterministic methods for mapping groundwater level spatial variability in sparsely monitored basins. Environmental Monitoring Assessment, 185(1):1-19. doi: 10.1007/s10661-012-2527-y
    [34] WMO, 1989. Management of Groundwater Observation Pro-grammes. Switzerland:Secretariat of the World Meteorological Organization.
    [35] Yates S R, Warrick A W, Myers D E, 1986. Disjunctive kriging:1. overview of estimation and conditional probability. Water Re-sources Research, 22(5):615-621. doi:10.1029/WR022 i005p00615
    [36] Zhou Y X, Dong D W, Liu J R et al., 2013. Upgrading a regional groundwater level monitoring network for Beijing Plain, China. Geoscience Frontiers, 4(1):127-138. doi:10. 1016/j. gsf.2012.03.008
  • [1] Kangwen ZHU, Yucheng CHEN, Sheng ZHANG, Zhimin YANG, Lei HUANG, Bo LEI, Hailing XIONG, Sheng WU, Xixi LI.  Risk Prevention and Control for Agricultural Non-Point Source Pollution Based on the Process of Pressure-Transformation-Absorption in Chongqing, China . Chinese Geographical Science, 2021, 31(4): 735-750. doi: 10.1007/s11769-021-1221-9
    [2] LI Yungang, ZHANG Yueyuan, HE Daming, LUO Xian, JI Xuan.  Spatial Downscaling of the Tropical Rainfall Measuring Mission Pre-cipitation Using Geographically Weighted Regression Kriging over the Lancang River Basin, China . Chinese Geographical Science, 2019, 20(3): 446-462. doi: 10.1007/s11769-019-1033-3
    [3] HUANG Yajie, LI Zhen, YE Huichun, ZHANG Shiwen, ZHUO Zhiqing, XING An, HUANG Yuanfang.  Mapping Soil Electrical Conductivity Using Ordinary Kriging Combined with Back-propagation Network . Chinese Geographical Science, 2019, 20(2): 270-282. doi: 10.1007/s11769-019-1027-1
    [4] FANG Chong, WEN Zhidan, LI Lin, DU Jia, LIU Ge, WANG Xiaodi, SONG Kaishan.  Agricultural Development and Implication for Wetlands Sustainability: A Case from Baoqing County, Northeast China . Chinese Geographical Science, 2019, 20(2): 231-244. doi: 10.1007/s11769-019-1019-1
    [5] JIN Xin, HE Chansheng, ZHANG Lanhui, ZHANG Baoqing.  A Modified Groundwater Module in SWAT for Improved Streamflow Simulation in a Large, Arid Endorheic River Watershed in Northwest China . Chinese Geographical Science, 2018, 28(1): 47-60. doi: 10.1007/s11769-018-0931-0
    [6] NAN Tian, SHAO Jingli, CAO Xiaoyuan, ZHANG Qiulan, CUI Yali.  Design of an Index System for Deep Groundwater Management Efficiency Evaluation: A Case Study in Tianjin City, China . Chinese Geographical Science, 2016, 26(3): 325-338. doi: 10.1007/s11769-016-0812-3
    [7] ZHANG Zuo, TAN Shukui, TANG Wenwu.  A GIS-based Spatial Analysis of Housing Price and Road Density in Proximity to Urban Lakes in Wuhan City, China . Chinese Geographical Science, 2015, 25(6): 775-790. doi: 10.1007/s11769-015-0788-4
    [8] XU Yingying, YAN Baixing, LUAN Zhaoqing, ZHU Hui, WANG Lixia.  Application of Stable Isotope Tracing Technologies in Identification of Transformation among Waters in Sanjiang Plain, Northeast China . Chinese Geographical Science, 2013, 23(4): 435-444. doi: 10.1007/s11769-012-0578-1
    [9] KUANG Wenhui.  Spatio-temporal Patterns of Intra-urban Land Use Change in Beijing, China Between 1984 and 2008 . Chinese Geographical Science, 2012, 22(2): 210-220.
    [10] PAN Yun, GONG Huili, ZHOU Demin, et al..  Impact of Land Use Change on Groundwater Recharge in Guishui River Basin, China . Chinese Geographical Science, 2011, 21(6): 734-743.
    [11] Mohammad Reza Jelokhani-Niaraki, Ali Asghar Alesheikh, Abolghasem Sadeghi-Niaraki.  An Efficient Approach for Historical Storage and Retrieval of Segmented Road Data in Geographic Information System for Transportation . Chinese Geographical Science, 2010, 20(3): 236-242. doi: 10.1007/s11769-010-0236-4
    [12] TAN Hongbing, RAO Wenbo, CHEN Jiansheng, SU Zhiguo, SUN Xiaoxu, LIU Xiaoyan.  Chemical and Isotopic Approach to Groundwater Cycle in Western Qaidam Basin, China . Chinese Geographical Science, 2009, 19(4): 357-364. doi: 10.1007/s11769-009-0357-9
    [13] LI Hong, LI Xingang, GAO Chuanbo, HUANG Guoqiang, JIANG Bin.  2D-Cell Experiment on Methyl Tert-Butyl Ether Transport in Saturated Zone of Groundwater . Chinese Geographical Science, 2007, 17(3): 275-279. doi: 10.1007/s11769-007-0275-7
    [14] Moiwo Juana PAUL.  Impact of Land-use Patterns on Distributed Groundwater Recharge and Discharge——A Case Study of Western Jilin, China . Chinese Geographical Science, 2006, 16(3): 229-235.
    [15] DAI Chang-lei, CHI Bao-ming, GAO Shu-qin.  ANALYSIS AND CALCULATION OF REGULATED WATER RESOURCES OF GROUNDWATER RESERVOIR . Chinese Geographical Science, 2005, 15(1): 60-63.
    [16] Hamadoun BOKAR, TANG Jie, LIN Nian-feng.  GROUNDWATER QUALITY AND CONTAMINATION INDEX MAPPING IN CHANGCHUN CITY,CHINA . Chinese Geographical Science, 2004, 14(1): 63-70.
    [17] WANG Ning, ZHANG Hong-yan, WANG Hui-lian, ZHANG Zheng-xiang.  SPATIAL ANALYSIS OF SOIL EROSION AND NON-POINT SOURCE POLLUTION BASED ON GIS IN ERLONG LAKE WATERSHED, JILIN PROVINCE . Chinese Geographical Science, 2004, 14(4): 355-360.
    [18] LI Lin-yi, LIU Zhao-li, LI Chun-lin, WAN En-pu.  SPATIAL CORRELATION ANALYSIS OF CROP YIELD IN THE MIDDLE AND WEST OF JILIN PROVINCE . Chinese Geographical Science, 2002, 12(2): 182-185.
    [19] MA Jin-zhu, LI Ji-jun.  THE GROUNDWATER RESOURCES AND ITS SUSTAINABLE DEVELOPMENT IN THE SOUTH EDGE OF TARIM BASIN . Chinese Geographical Science, 2001, 11(1): 57-62.
    [20] YAN Deng-hua, DENG Wei, YANG Jian-qiang, WANG Chun-mei, WU Pei-pei.  A STUDY ON THE EVOLUTION OF GROUNDWATER POLLUTANTS AND CAUSES OF FORMATION IN MANZHOULI . Chinese Geographical Science, 2001, 11(1): 92-96.
  • 加载中
计量
  • 文章访问数:  450
  • HTML全文浏览量:  5
  • PDF下载量:  1190
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-01
  • 修回日期:  2016-11-04
  • 刊出日期:  2017-04-27

Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India

doi: 10.1007/s11769-017-0859-9
    基金项目:  Under the auspices of the Visvesvaraya National Institute of Technology (Nagpur), Centrally Funded Technical Institution Under the Ministry of Human Resource Development (No. l7-2/2014-TS.I), Department of Science and Technology, Government of India (No. SR/S9/Z-09/2012)
    通讯作者: Kumar Singh CHANDAN.E-mail:singhchandan44@gmail.com

摘要: Groundwater is one of the most important resources, its monitoring and optimized management has now become the priority to satisfy the demand of rapidly increasing population. In many developing countries, optimized groundwater level monitoring networks are rarely designed to build up a strong groundwater level data base, and to reduce operation time and cost. The paper presents application of geostatistical method to optimize existing network of observation wells for 18 sub-watersheds within the Wainganga Sub-basin located in the central part of India. The average groundwater level fluctuation (GWLF) from 37 observation wells is compared with parameters like lineament density, recharge, density of irrigation wells, land use and hydrogeology (LiRDLH) of Wainganga Sub-basin and analyzed stochastically in Geographic Information System (GIS) environment using simple, ordinary, disjunctive and universal kriging methods. Semivariogram analyses have been performed separately for all kriging methods to fit the best theoretical model with experimental model. Results from gaussian, spherical, exponential and circular theoretical models were compared with those of experimental models obtained from the groundwater level data. Spatial analyses conclude that the exponential semivariogram model obtained from ordinary kriging gives the best fit model. Study demonstrates that ordinary kriging gives the optimal solution and additional number of observation wells can be added utilizing the error variance for optimal design of groundwater level monitoring networks. This study describes the use of Geostatistics methods in GIS to predict the groundwater level and upgrade groundwater level monitoring networks from the randomly distributed observation wells considering multiple parameters such as GWLF and LiRDLH. The method proposed in the present study is observed to be an efficient method for selecting observation well locations in a complex geological set up. The study concludes that minimum 82 wells are required for proper monitoring of groundwater level in the study area.

English Abstract

Kumar Singh CHANDAN, Bhaskar Katpatal YASHWANT. Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India[J]. 中国地理科学, 2017, 27(2): 201-215. doi: 10.1007/s11769-017-0859-9
引用本文: Kumar Singh CHANDAN, Bhaskar Katpatal YASHWANT. Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India[J]. 中国地理科学, 2017, 27(2): 201-215. doi: 10.1007/s11769-017-0859-9
Kumar Singh CHANDAN, Bhaskar Katpatal YASHWANT. Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India[J]. Chinese Geographical Science, 2017, 27(2): 201-215. doi: 10.1007/s11769-017-0859-9
Citation: Kumar Singh CHANDAN, Bhaskar Katpatal YASHWANT. Optimization of Groundwater Level Monitoring Network Using GIS-based Geostatistical Method and Multi-parameter Analysis: A Case Study in Wainganga Sub-basin, India[J]. Chinese Geographical Science, 2017, 27(2): 201-215. doi: 10.1007/s11769-017-0859-9
参考文献 (36)

目录

    /

    返回文章
    返回