留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia

LIN Sen LIU Ronggao

LIN Sen, LIU Ronggao. A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia[J]. 中国地理科学, 2016, 26(1): 22-34. doi: 10.1007/s11769-015-0789-3
引用本文: LIN Sen, LIU Ronggao. A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia[J]. 中国地理科学, 2016, 26(1): 22-34. doi: 10.1007/s11769-015-0789-3
LIN Sen, LIU Ronggao. A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia[J]. Chinese Geographical Science, 2016, 26(1): 22-34. doi: 10.1007/s11769-015-0789-3
Citation: LIN Sen, LIU Ronggao. A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia[J]. Chinese Geographical Science, 2016, 26(1): 22-34. doi: 10.1007/s11769-015-0789-3

A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia

doi: 10.1007/s11769-015-0789-3
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41171285), Research and Development Special Fund for Public Welfare Industry (Meteorology) of China (No. GYHY201106014)
详细信息
    通讯作者:

    LIU Ronggao. E-mail:liurg@igsnrr.ac.cn

A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia

Funds: Under the auspices of National Natural Science Foundation of China (No. 41171285), Research and Development Special Fund for Public Welfare Industry (Meteorology) of China (No. GYHY201106014)
More Information
    Corresponding author: LIU Ronggao. E-mail:liurg@igsnrr.ac.cn
  • 摘要: Distribution of monsoon forests is important for the research of carbon and water cycles in the tropical regions. In this paper, a simple approach is proposed to map monsoon forests using the Normalized Difference Vegetation Index (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Owing to the high contrast of greenness between wet season and dry season, the monsoon forest can be easily discriminated from other forests by combining the maximum and minimum annual NDVI. The MODIS-based monsoon forest maps (MODMF) from 2000 to 2009 are derived and evaluated using the ground-truth dataset. The MODMF achieves an average producer accuracy of 80.0% and the Kappa statistic of 0.719. The variability of MODMF among different years is compared with that calculated from MODIS land cover products (MCD12Q1). The results show that the coefficient of variation of total monsoon forest area in MODMF is 7.3%, which is far lower than that in MCD12Q1 with 24.3%. Moreover, the pixels in MODMF which can be identified for 7 to 9 times between 2001 and 2009 account for 53.1%, while only 7.9% of MCD12Q1 pixels have this frequency. Additionally, the monsoon forest areas estimated in MODMF, Global Land Cover 2000(GLC2000), MCD12Q1 and University of Maryland (UMD) products are compared with the statistical dataset at national level, which reveals that MODMF has the highest R2 of 0.95 and the lowest RMSE of 14014 km2. This algorithm is simple but reliable for mapping the monsoon forests without complex classification techniques.
  • [1] Bartholome E, Belward A S, 2005. GLC2000:a new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26(9):1959-1977. doi: 10.1080/01431160412331291297
    [2] Bicheron P, Defourny P, Brockmann C et al., 2008. Globcover:Products Description and Validation Report. Toulouse:MEDIAS France.
    [3] Bohlman S A, 2010. Landscape patterns and environmental controls of deciduousness in forests of central Panama. Global Ecology and Biogeography, 19(3):376-385. doi:10.1111/j. 1466-8238.2009.00518.x
    [4] Bontemps S, Defourny P, Bogaert E V et al., 2011. GLOBCOVER 2009:Products Description and Validation Report. European Space Agency and Université catholique de Louvain.
    [5] Brown J C, Kastens J H, Coutinho A C et al., 2013. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sensing of Environment, 130(4):39-50. doi: 10.1016/j.rse.2012.11.009
    [6] Collins N M, Sayer J A, Whitmore T C, 1991. The Conservation Atlas of Tropical Forests:Asia and the Pacific. London:Macmillan Press Ltd.
    [7] Delbart N, Kergoat L, Le Toan T et al., 2005. Determination of phenological dates in boreal regions using normalized difference water index. Remote Sensing of Environment, 97(1):26-38. doi: 10.1016/j.rse.2005.03.011
    [8] Eamus D, 1999. Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends in Ecology & Evolution, 14(1):11-16. doi: 10.1016/S0169-5347(98)01532-8
    [9] FAO (Food and Agriculture Organization of the United Nations), 1998. Asia-Pacific Forestry Sector Outlook Study Working Paper Series:Country Report. Roma.
    [10] FAO (Food and Agriculture Organization of the United Nations), 2001. Global Forest Resources Assessment 2000:Main Report. Roma.
    [11] FAO (Food and Agriculture Organization of the United Nations), 2010. Global Forest Resources Assessment 2010:Main Report. Roma.
    [12] Fleiss J L, Levin B, Paik M C, 2003. Statistical Methods for Rates and Proportions. New Jersey:John Wiley & Sons Inc.
    [13] Foley J A, Prentice I C, Ramankutty N et al., 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochemical Cycles, 10(4):603-628. doi: 10.1029/96gb02692
    [14] Friedl M A, McIver D K, Hodges J C F et al., 2002. Global land cover mapping from MODIS:algorithms and early results. Remote Sensing of Environment, 83(1-2):287-302. doi:10. 1016/S0034-4257(02)00078-0
    [15] Friedl M A, Sulla-Menashe D, Tan B et al., 2010. MODIS Collection 5 global land cover:algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1):168-182. doi: 10.1016/j.rse.2009.08.016
    [16] Gong P, Wang J, Yu L et al., 2013. Finer resolution observation and monitoring of global land cover:first mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7):2607-2654. doi: 10.1080/01431161.2012.748992
    [17] Hansen M C, De Fries R S, Townshend J R G et al., 2000. Global land cover classification at 1km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21(6):1331-1364. doi: 10.1080/014311600210209
    [18] Herold M, Mayaux P, Woodcock C E et al., 2008. Some challenges in global land cover mapping:an assessment of agreement and accuracy in existing 1 km datasets. Remote Sensing of Environment, 112(5):2538-2556. doi: 10.1016/j.rse.2007.11.013
    [19] Homer C, Huang C Q, Yang L M et al., 2004. Development of a 2001 national land-cover database for the United States. Photogrammetric Engineering and Remote Sensing, 70(7):829-840. doi: 10.14358/PERS.70.7.829
    [20] Htun N Z, Mizoue N, Yoshida S, 2011. Classifying tropical deciduous vegetation:a comparison of multiple approaches in Popa Mountain Park, Myanmar. International Journal of Remote Sensing, 32(24):8935-8948. doi:10.1080/01431161. 2010.531779
    [21] Ito E, Araki M, Tith B et al., 2008. Leaf-shedding phenology in lowland tropical seasonal forests of Cambodia as estimated from NOAA satellite images. IEEE Transactions on Geoscien-ce and Remote Sensing, 46(10):2867-2871. doi:10.1109/Tgrs. 2008.919820
    [22] Jia K, Liang S, Wei X et al., 2014. Land cover classification of Landsat data with phenological features extracted from time series MODIS NDVI data. Remote Sensing, 6(11):11518-11532. doi: 10.3390/rs61111518
    [23] Kalacska M E R, Sanchez-Azofeifa G A, Calvo-Alvarado J C et al., 2005. Effects of season and successional stage on leaf area index and spectral vegetation indices in three mesoamerican tropical dry forests. Biotropica, 37(4):486-496. doi: 10.1111/j.1744-7429.2005.00067.x
    [24] Krishnaswamy J, Kiran M C, Ganeshaiah K N, 2004. Tree model based eco-climatic vegetation classification and fuzzy mapp-ing in diverse tropical deciduous ecosystems using multi-season NDVI. International Journal of Remote Sensing, 25(6):1185-1205. doi: 10.1080/0143116031000149989
    [25] Landis J R, Koch G G, 1977. The measurement of observer agreement for categorical data. Biometrics, 33(1):159-174. doi: 10.2307/2529310
    [26] Lenney M P, Woodcock C E, Collins J B et al., 1996. The status of agricultural lands in Egypt:the use of multitemporal NDVI features derived from Landsat TM. Remote Sensing of Environment, 56(95):8-20. doi:10.1016/0034-4257(95) 00152-2
    [27] Lillesø J P B, Shrestha T B, Dhakal L P et al., 2005. The Map of Potential Vegetation of Nepal-A Forestry/Agro-Ecological/Biodiversity Classification System. Copenhagen:Danish Centre for Forest Landscape & Planning Kvl.
    [28] Liu R G, Liu Y, 2013. Generation of new cloud masks from MODIS land surface reflectance products. Remote Sensing of Environment, 133(12):21-37. doi: 10.1016/j.rse.2013.01.019
    [29] Loveland T R, Reed B C, Brown J F et al., 2000. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6-7):1303-1330. doi: 10.1080/014311600210191
    [30] Malhi Y, Pegoraro E, Nobre AD et al., 2002. Energy and water dynamics of a central Amazonian rain forest. Journal of Geophysical Research:Atmospheres, 107(D20):LBA 45-1-LBA 45-17. doi: 10.1029/2001jd000623
    [31] Miles L, Newton A C, DeFries R S et al., 2006. A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33(3):491-505. doi:10.1111/j. 1365-2699.2005.01424.x
    [32] Murphy P G, Lugo A E, 1986. Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17(1):67-88. doi: 10.1146/annurev.es.17.110186.000435
    [33] Peel M C, McMahon T A, Finlayson B L et al., 2001. Identification and explanation of continental differences in the variability of annual runoff. Journal of Hydrology, 250(1):224-240. doi: 10.1016/S0022-1694(01)00438-3
    [34] Ruangpanit N, 1995. Tropical seasonal forests in monsoon Asia:with emphasis on continental southeast Asia. Vegetatio, 121(1-2):31-40. doi: 10.1007/Bf00044670
    [35] Steininger M K, Tucker C J, Ersts P et al., 2001. Clearance and fragmentation of tropical deciduous forest in the Tierras Bajas, Santa Cruz, Bolivia. Conservation Biology, 15(4):856-866. doi: 10.1046/j.1523-1739.2001.015004856.x
    [36] Tanaka N, Kume T, Yoshifuji N et al., 2008. A review of evapotranspiration estimates from tropical forests in Thailand and adjacent regions. Agricultural and Forest Meteorology, 148(5):807-819. doi: 10.1016/j.agrformet.2008.01.011
    [37] Tang X, Li H, Desai A R et al., 2014. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth? Scientific Reports, 4:7483-7483. doi: 10.1038/srep07483
    [38] Townshend J R G, Justice C O, Kalb V, 1987. Characterization and classification of south American land cover types using satellite data. International Journal of Remote Sensing, 8(8):1189-1207. doi: 10.1080/01431168708954764
    [39] Trejo I, Dirzo R, 2000. Deforestation of seasonally dry tropical forest:a national and local analysis in Mexico. Biological Conservation, 94(2):133-142. doi:10.1016/S0006-3207(99) 00188-3
    [40] Tucker C J, Townshend J R G, Goff T E, 1985. African land-cover classification using satellite data. Science, 227(4685):369-375. doi: 10.1126/science.227.4685.369
    [41] Valentini R, Matteucci G, Dolman A J et al., 2000. Respiration as the main determinant of carbon balance in European forests. Nature, 404(6780):861-865. doi: 10.1038/35009084
    [42] Vermote E F, El Saleous N Z, Justice C O, 2002. Atmospheric correction of MODIS data in the visible to middle infrared:first results. Remote Sensing of Environment, 83(1-2):97-111. doi: 10.1016/S0034-4257(02)00089-5
    [43] Vourlitis G L, Priante N, Hayashi M M S et al., 2002. Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water Resources Research, 38(6):30-1-30-11. doi: 10.1029/2000wr000122
    [44] Vourlitis G L, Priante N, Hayashi M M S et al., 2004. Effects of meteorological variations on the CO2 exchange of a Brazilian transitional tropical forest. Ecological Applications, 14(4):S89-S100. doi: 10.1890/01-6005
    [45] Wright S J, Cornejo F H, 1990. Seasonal drought and leaf fall in a tropical forest. Ecology, 71(3):1165-1175. doi: 10.2307/1937384
    [46] Xiao X M, Boles S, Liu J Y et al., 2005. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 95(4):480-492. doi: 10.1016/j.rse.2004.12.009
    [47] Yoshifuji N, Kumagai T O, Tanaka K et al., 2006. Inter-annual variation in growing season length of a tropical seasonal forest in northern Thailand. Forest Ecology and Management, 229(1-3):333-339. doi: 10.1016/j.foreco.2006.04.013
    [48] Zhu Z, Woodcock C E, 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144(1):152-171. doi:10. 1016/j.rse.2014.01.011
  • [1] Yali MENG, Keqin DUAN, Wei SHANG, Peihong SHI, Shuangshuang LI, Ying CHENG, Rong CHEN, Zhaopeng ZHANG.  Projected Regional 1.50°C and 2.00°C Warming Threshold-crossing Time Worldwide Using the CMIP6 Models . Chinese Geographical Science, 2023, 33(6): 1095-1108. doi: 10.1007/s11769-023-1372-y
    [2] Hao WANG, Zongshan LI, Weijuan ZHANG, Xin YE, Xianfeng LIU.  A Modified Temperature-Vegetation Dryness Index (MTVDI) for Assessment of Surface Soil Moisture Based on MODIS Data . Chinese Geographical Science, 2022, 32(4): 592-605. doi: 10.1007/s11769-022-1288-y
    [3] Majid AHMADI-MOLAVERDI, Iraj JABBARI, Amanollah FATHNIA.  Relationship Between Land Use Changes and the Production of Dust Sources in Kermanshah Province, Iran . Chinese Geographical Science, 2021, 31(6): 1057-1069. doi: 10.1007/s11769-021-1235-3
    [4] ZHAO Boyu, DU Jia, SONG Kaishan, Pierre-André JACINTHE, XIANG Xiaoyun, ZHOU Haohao, YANG Zhichao, ZHANG Liyan, GUO Pingping.  Spatio-temporal Variation of Water Heat Flux Using MODIS Land Surface Temperature Product over Hulun Lake, China During 2001-2018 . Chinese Geographical Science, 2020, 30(6): 1065-1080. doi: 10.1007/s11769-020-1166-4
    [5] YUAN Shuai, LIU Chengyu, LIU Xueqin.  Practical Model of Sea Ice Thickness of Bohai Sea Based on MODIS Data . Chinese Geographical Science, 2018, 28(5): 863-872. doi: 10.1007/s11769-018-0986-y
    [6] LI Xianju, CHEN Gang, LIU Jingyi, CHEN Weitao, CHENG Xinwen, LIAO Yiwei.  Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region . Chinese Geographical Science, 2017, 27(5): 827-835. doi: 10.1007/s11769-017-0894-6
    [7] Khodakaram HATAMI BAHMANBEIGLOU, Saeed MOVAHEDI.  Identifying Sky Conditions in Iran from MODIS Terra and Aqua Cloud Products . Chinese Geographical Science, 2017, 27(5): 800-809. doi: 10.1007/s11769-017-0908-4
    [8] YAN Huimin, XIAO Xiangming, HUANG Heqing, LIU Jiyuan, CHEN Jingqing, BAI Xuehong.  Multiple Cropping Intensity in China Derived from Agro-meteorolo­gical Observations and MODIS Data . Chinese Geographical Science, 2014, 0(2): 205-219. doi: 10.1007/s11769-013-0637-2
    [9] ZHENG Wei, SHAO Jiali, WANG Meng, HUANG Dapeng.  A Thin Cloud Removal Method from Remote Sensing Image for Water Body Identification . Chinese Geographical Science, 2013, 23(4): 460-469. doi: 10.1007/s11769-013-0601-1
    [10] WEN Zhaofei, ZHANG Ce, ZHANG Shuqing, et al.  Effects of Normalized Difference Vegetation Index and Related wavebands′ Characteristics on Detecting Spatial Heterogeneity Using Variogram-based Analysis . Chinese Geographical Science, 2012, 22(2): 188-195.
    [11] XIAO Yu, AN Kai, XIE Gaodi, LU Chunxia, ZHANG Biao.  Carbon Sequestration in Forest Vegetation of Beijing at Sublot Level . Chinese Geographical Science, 2011, 21(3): 279-289.
    [12] Artigas Durán, Héctor Morrás, Guillermo Studdert, LIU Xiaobing.  Distribution, Properties, Land Use and Management of Mollisols in South America . Chinese Geographical Science, 2011, 21(5): 511-.
    [13] SHEN Zehao, LI Peng, SUN Hongkai, PANG Lihua.  Geographical Patterns of Chinese Ethnic Minority Population Composition and Ethnic Diversity . Chinese Geographical Science, 2011, 21(4): 454-464.
    [14] ZHANG Shengwei, LEI Yuping, WANG Liping, et al..  Crop Classification Using MODIS NDVI Data Denoised by Wavelet: A Case Study in Hebei Plain, China . Chinese Geographical Science, 2011, 21(3): 322-333.
    [15] NA Xiaodong, ZHANG Shuqing, ZHANG Huaiqing, LI Xiaofeng, YU Huan, LIU Chunyue.  Integrating TM and Ancillary Geographical Data with Classification Trees for Land Cover Classification of Marsh Area . Chinese Geographical Science, 2009, 19(2): 177-185. doi: 10.1007/s11769-009-0177-y
    [16] CAO Yun-gang, LIU Chuang.  NORMALIZED DIFFERENCE SNOW INDEX SIMULATION FOR SNOW-COVER MAPPING IN FOREST BY GEOSAIL MODEL . Chinese Geographical Science, 2006, 16(2): 171-175.
    [17] XU Han-qiu.  ASSESSMENT OF THE SFIM ALGORITHM . Chinese Geographical Science, 2004, 14(1): 48-56.
    [18] CHEN Jie, GONG Zi-tong, CHEN Zhi-cheng, TAN Man-zhi.  CLASSIFICATION OF CRYOSOLS:SIGNIFICANCE, ACHIEVEMENTS AND CHALLENGES . Chinese Geographical Science, 2003, 13(4): 352-358.
    [19] 庄大方, 凌扬荣, Yoshio Awaya.  INTEGRATED VEGETATION CLASSIFICATION AND MAPPING USING REMOTE SENSING AND GIS TECHNIQUES . Chinese Geographical Science, 1999, 9(1): 49-56.
    [20] 肖笃宁.  ALFISOLS AND CLOSELY RELATED SOILS IN CHINA . Chinese Geographical Science, 1992, 2(1): 18-29.
  • 加载中
计量
  • 文章访问数:  298
  • HTML全文浏览量:  14
  • PDF下载量:  940
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-24
  • 修回日期:  2015-05-21
  • 刊出日期:  2016-01-27

A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia

doi: 10.1007/s11769-015-0789-3
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41171285), Research and Development Special Fund for Public Welfare Industry (Meteorology) of China (No. GYHY201106014)
    通讯作者: LIU Ronggao. E-mail:liurg@igsnrr.ac.cn

摘要: Distribution of monsoon forests is important for the research of carbon and water cycles in the tropical regions. In this paper, a simple approach is proposed to map monsoon forests using the Normalized Difference Vegetation Index (NDVI) derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Owing to the high contrast of greenness between wet season and dry season, the monsoon forest can be easily discriminated from other forests by combining the maximum and minimum annual NDVI. The MODIS-based monsoon forest maps (MODMF) from 2000 to 2009 are derived and evaluated using the ground-truth dataset. The MODMF achieves an average producer accuracy of 80.0% and the Kappa statistic of 0.719. The variability of MODMF among different years is compared with that calculated from MODIS land cover products (MCD12Q1). The results show that the coefficient of variation of total monsoon forest area in MODMF is 7.3%, which is far lower than that in MCD12Q1 with 24.3%. Moreover, the pixels in MODMF which can be identified for 7 to 9 times between 2001 and 2009 account for 53.1%, while only 7.9% of MCD12Q1 pixels have this frequency. Additionally, the monsoon forest areas estimated in MODMF, Global Land Cover 2000(GLC2000), MCD12Q1 and University of Maryland (UMD) products are compared with the statistical dataset at national level, which reveals that MODMF has the highest R2 of 0.95 and the lowest RMSE of 14014 km2. This algorithm is simple but reliable for mapping the monsoon forests without complex classification techniques.

English Abstract

LIN Sen, LIU Ronggao. A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia[J]. 中国地理科学, 2016, 26(1): 22-34. doi: 10.1007/s11769-015-0789-3
引用本文: LIN Sen, LIU Ronggao. A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia[J]. 中国地理科学, 2016, 26(1): 22-34. doi: 10.1007/s11769-015-0789-3
LIN Sen, LIU Ronggao. A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia[J]. Chinese Geographical Science, 2016, 26(1): 22-34. doi: 10.1007/s11769-015-0789-3
Citation: LIN Sen, LIU Ronggao. A Simple Method to Extract Tropical Monsoon Forests Using NDVI Based on MODIS Data:A Case Study in South Asia and Peninsula Southeast Asia[J]. Chinese Geographical Science, 2016, 26(1): 22-34. doi: 10.1007/s11769-015-0789-3
参考文献 (48)

目录

    /

    返回文章
    返回