留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China

ZHANG Shuwen LI Fei LI Tianqi YANG Jiuchun BU Kun CHANG Liping WANG Wenjuan YAN Yechao

ZHANG Shuwen, LI Fei, LI Tianqi, YANG Jiuchun, BU Kun, CHANG Liping, WANG Wenjuan, YAN Yechao. Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China[J]. 中国地理科学, 2015, 25(5): 602-611. doi: 10.1007/s11769-015-0780-z
引用本文: ZHANG Shuwen, LI Fei, LI Tianqi, YANG Jiuchun, BU Kun, CHANG Liping, WANG Wenjuan, YAN Yechao. Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China[J]. 中国地理科学, 2015, 25(5): 602-611. doi: 10.1007/s11769-015-0780-z
ZHANG Shuwen, LI Fei, LI Tianqi, YANG Jiuchun, BU Kun, CHANG Liping, WANG Wenjuan, YAN Yechao. Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China[J]. Chinese Geographical Science, 2015, 25(5): 602-611. doi: 10.1007/s11769-015-0780-z
Citation: ZHANG Shuwen, LI Fei, LI Tianqi, YANG Jiuchun, BU Kun, CHANG Liping, WANG Wenjuan, YAN Yechao. Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China[J]. Chinese Geographical Science, 2015, 25(5): 602-611. doi: 10.1007/s11769-015-0780-z

Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China

doi: 10.1007/s11769-015-0780-z
基金项目: Under the auspices of National Natural Science Foundation of China (No. 41271416), Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05090310)
详细信息
    通讯作者:

    ZHANG Shuwen.E-mail:zhangshuwen@neigae.ac.cn

Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China

Funds: Under the auspices of National Natural Science Foundation of China (No. 41271416), Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05090310)
More Information
    Corresponding author: ZHANG Shuwen.E-mail:zhangshuwen@neigae.ac.cn
  • 摘要: Gully erosion is one of the major causes of land degradation in most areas and attracts increasing attention from researchers. We monitored gullies in the Kebai region in Heilongjiang Province of China by using remote sensing data and found that gully density increased with the increase in slope when the slope was less than 3°. Gully density in sunny slopes or windward slopes was greater than in shady slopes or leeward slopes because of the impacts of freezing and thawing, wind and solar radiation. Specifically, the gully density in northeast slope was the greatest and in southwest was the smallest. Gully density was reduced with increasing slope length and the longer the slope length, the less the gully density changed between 1965 and 2005. Affected by runoff, gullies most easily to occur in concave slopes and the critical elevation for gully erosion was 250-275 m. Moreover, hilly regions had the greatest gully density, followed by tableland regions, whereas the gully density in flatlands was the lowest. However, the gully density of these three types of landforms all increased between 1945 and 2000, and the portion of increase was 57.45% (hill), 52.91% (mesa) and 25.32% (plain), respectively.
  • [1] Alho P, Vaaja M, Kukko A et al., 2011. Mobile laser scanning in fluvial geomorphology: mapping and change detection of point bars. Zeitschrift für Geomorphologie, 5(20): 31-50. doi:  10.1127/0372-8854/2011/0055S2-0044
    [2] Baruch A, Filin S, 2011. Detection of gullies in roughly textured terrain using airborne laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5): 564-578. doi:  10.1016/j.isprsjprs.2011.03.001
    [3] Beavis S G, 2000, Structural controls on the orientation of erosion gullies in mid-western New South Wales, Australia. Geomorphology, 33(1): 59-72. doi:  10.1016/s0169-555x(99)00110-5
    [4] Betts H D, Trustrum N A, DeRose R C, 2003. Geomorphic changes in a complex gully system measured from sequential digital elevation models, and implications for management. Earth Surface Processes and Landforms, 28(10): 1043-1058. doi:  10.1002/esp.500
    [5] Bouaziz M, Wijaya A, Gloaguen R, 2011. Remote gully erosion mapping using aster data and geomorphologic analysis in the Main Ethiopian Rift. Geo-spatial Information Science, 14(4): 246-254. doi:  10.1007/s11806-011-0565-1
    [6] Bremer M, Sass O, 2012. Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology, 138: 49-60. doi:  10.1016/j.geomorph.2011.08.024
    [7] Conoscenti C, Angileri S, Cappadonia C et al., 2014. Gully erosion susceptibility assessment by means of GIS-based logistic regression: a case of Sicily (Italy). Geomorphology, 204(1): 399-411. doi:  10.1016/j.geomorph.2013.08.021
    [8] Corporation H P, 2014. A quantitative study of gully erosion based on object-oriented analysis techniques: a case study in Beiyanzikou catchment of Qixia, Shandong, China. Scientific World Journal, 5(1): 149-168. doi:  10.1155/2014/417325
    [9] Daba S, Rieger W, Strauss P, 2003. Assessment of gully erosion in eastern Ethiopia using photogrammetric techniques. Catena, 50(2): 273-291. doi:  10.1016/s0341-8162(02)00135-2
    [10] DeRose R C, Gomez B, Marden M et al., 1998. Gully erosion in Mangatu forest, New Zealand, estimated from digital elevation models. Earth Surface Processes and Landforms, 23(11): 1045-1053. doi:  10.1002/(SICI)1096-9837(1998110)
    [11] Ding Wenfeng, Zhang Pingchang, 2006. Application of topographic needle instrument on slope soil erosion. Soil and Water Conservation in China, 1: 49-51. (in Chinese)
    [12] Gutiérrez A G, Schnabel S, Contador F L, 2009. Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degradation & Development, 20(5): 535-550. doi:  10.1002/ldr.931
    [13] James L A, Watson D G, Hansen W F, 2007. Using LiDAR data to map gullies and headwater streams under forest canopy: south Carolina, USA. Catena, 71(1): 132-144. doi: 10.1016/j.catena. 2006.10.010
    [14] Kertész A, Gergely J, 2011. Gully erosion in Hungary, review and case study. Procedia-Social and Behavioral Sciences, 19: 693-701. doi:  10.1016/j.sbspro.2011.05.187
    [15] Li Fei, Zhang Shuwen, Li Tianqi, 2012. The spatial distribution relations between gully and terrain factors in the south of typical black soil zone in northeast China. Soil and Crop, 1(3): 148-154. (in Chinese)
    [16] Li Guanglu, Klik A, Wu Faqi, 2004. Gully erosion features and its causes of formation on the (Yuan) land in the Loess Plateau, China. Gully Erosion under Global Change. Chengdu: Sichuan Science and Technology Press, 131-142. (in Chinese)
    [17] Li Tianqi, 2012. A Case Study and Module Simulation of Gully Erosion in Black Soil Region. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Science, 69-70. (in Chinese)
    [18] Li Xiaoli, Shen Xiangdong, Zhang Yajing, 2006. Experimental analysis on soil wind-erosion amount in Siziwang Banner North Yinshan Mountain, Inner Mongolia. Arid Land Georaphy, 29(2): 292-296. (in Chinese)
    [19] Li Xiaoyan, Wang Zongming, Zhang Shuwen et al., 2007. Dynamic and spatial distribution of gully in the typical upland region of northeast China. Scientia Geographica Sinica, 27(4): 531-536. (in Chinese)
    [20] Lesschen J P, Kok K, Verburg P H et al., 2007. Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain. Catena, 71(1): 110-121. doi:  10.1016/j.catena.2006.05.014
    [21] Marzolff I, Poesen J, 2009. The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system. Geomorphology, 111(1): 48-60. doi:  10.1016/j.geomorph.2008.05.047
    [22] Muñoz-Robles C, Reid N, Frazier P et al., 2010. Factors related to gully erosion in woody encroachment in south-eastern Australia. Catena, 83(2-3): 148-157. doi: 10.1016/j.catena.2010.08. 002
    [23] Morgan R P C, Mngomezulu D, 2003. Threshold conditions for initiation of valley-side gullies in the Middle Veld of Swaziland. Catena, 50(2): 401-414. doi: 10.1016/S0341-8162(02) 00129-7
    [24] Mousazadeh F, Salleh K O, 2014a. The Influence of lithology and soil on the occurrence and expansion of gully erosion, Toroud Basin-Iran. Procedia-Social and Behavioral Sciences, 120: 749-756. doi:  10.1016/j.sbspro.2014.02.158
    [25] Mousazadeh F, Salleh K O, 2014b. Factors controlling gully erosion development in Toroud Basin-Iran. Procedia-Social and Behavioral Sciences, 120: 506-512. doi: 10.1016/j.sbspro. 2014.02.130
    [26] Nazari Samani A, Ahmadi H, Mohammadi A et al., 2010. Factors controlling gully advancement and models evaluation (Hableh Rood Basin, Iran). Water Resources Management, 24(8): 1531-1549. doi:  10.1007/s11269-009-9512-4
    [27] Ndomba P M, Mtalo F, Killingtveit A, 2009. Estimating gully erosion contribution to large catchment sediment yield rate in Tanzania. Physics & Chemistry of the Earth Parts, 34(13): 741-748. doi:  10.1016/j.pce.2009.06.009
    [28] Perroy R L, Bookhagen B, Asner G P et al., 2010, Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. Geomorphology, 118(3): 288-300. doi:  10.1016/j.geomorph.2010.01.009
    [29] Poesen J, Nachtergaele J, Verstraeten G et al., 2003. Gully erosion and environmental change: importance and research needs. Catena, 50(2-4): 91-133. doi: 10.1016/s0341-8162(02) 00143-1
    [30] Poesen J, Valentin C, 2003. Preface. Catena, 50(2-4): 87-89.
    [31] Ries J B, Marzolff I, 2003. Monitoring of gully erosion in the central Ebro Basin by large scale aerial photography taken from a remotely controlled blimp. Catena, 50(2-4): 309-328. doi:  10.1016/S0341-8162(02)00133-9
    [32] Ritchie J C, Grissinger E H, Murphey J B et al., 1994. Measuring channel and gully cross-sections with an airborne laser altimeter. Hydrological Processes, 8(3): 237-243. doi: 10.1002/ hyp. 3360080305
    [33] Ramos M C, MartínezCasasnova J A, Poesen J, 2004. Assessment of sidewall erosion in large gullies using multi-temporal DEMs and logistic regression analysis. Geomorphology, 58: 305-321. doi:  10.1016/j.geomorph.2003.08.005
    [34] Salleh K O, Mousazadeh F, 2011. Gully erosion in semiarid regions. Procedia Social and Behavioral Sciences, 19: 651-661. doi:  10.1016/j.sbspro.2011.05.182
    [35] Seeger M, Marzolff I, Ries J B, 2009. Identification of gully-development processes in semi-arid NE-Spain. Zeitschrift für Geomorphologie, 53: 417-431. doi: 10.1127/0372-8854/2009/ 0053-0417
    [36] Shellberg J G, Brooks A P, Spencer J et al., 2013. The hydrogeomorphic influences on alluvial gully erosion along the Mitchell River fluvial megafan. Hydrological Processes, 27(7): 1086-1104. doi:  10.1002/hyp.9240
    [37] Shruthi R B V, Kerle, N, Jetten V, 2011. Object-based gully feature extraction using high spatial resolution imagery. Geomorphology, 134: 260-268. doi: 10.1016/j.geomorph.2011. 07.003
    [38] Teasdale G N, Barber M E, 2014. Aerial assessment of ephemeral gully erosion from agricultural regions in the Pacific northwest. American Society of Civil Engineers, 134(6): 807-814. doi:  10.1061/(ASCE)0733-9437(2008)134:6(807)
    [39] Valentin C, Poesen J, Yong L, 2005. Gully erosion: impacts, factors and control. Catena, 63(2-3): 132-153. doi: 10.1016/j. catena.2005.06.001
    [40] Vanwalleghem T, Van D E M, Poesen J et al., 2003. Characteristics and controlling factors of old gullies under forest in a temperate humid climate: a case study from the Meerdaal Forest (Central Belgium). Geomorphology, 56(1): 15-29. doi:  10.1016/S0169-555X(03)00043-6
    [41] Wang Wenjuan, Deng Rongxin, Zhang Shuwen, 2012. Spatial pattern change and topographic differentia of gully erosion in the type black soil area of northeast China during the past 40 years. Geography and Geo-Information Science, 28(3): 68-71. (in Chinese)
    [42] Wang Wenjuan, Zhang Shuwen, Deng Rongxin, 2011. Gully status and relationship with landscape pattern in black soil area of Northeast China. Transactions of the CSAE, 27(10): 192-198. (in Chinese)
    [43] Wang Wenjuan, Zhang Shuwen, Li Ying et al., 2008. Application of high-resolution images on soil loss quantitative estimation. System Science and Comprehensive Studies in Agriculture, 24(4): 441-446. (in Chinese)
    [44] Wang Wenjuan, Zhang Shuwen, Li Ying et al., 2009. Dynamics and effect factors of gully in the black soil area of northeast during the past 40 years. Journal of Soil and Water Conservation, 23(5): 51-54. (in Chinese)
    [45] Yan Yechao, Yue Shuping, Zhang Shuwen et al., 2009. Evaluation on economic loss caused by soil erosion in black soil region of northeast China and its characteristics analysis. Journal of Natural Resources, 24(12): 2135-2146. (in Chinese)
    [46] Yan Yechao, Zhang Shuwen, Li Xiaoyan et al., 2005. Temporal and spatial variation of erosion gullies in Kebai black soil region of Heilongjiang during the past 50 years. Acta Geographica Sinica, 60(6): 1016-1020. (in Chinese)
    [47] Yan Yechao, Zhang Shuwen, Yue Shuping, 2006. Application of Corona and Spot imagery on erosion gully research in typical black soil regions of Northeast China. Resources Science, 28(6): 154-160. (in Chinese)
    [48] Yan Yechao, Zhang Shuwen, Yue Shuping, 2007. Classification of erosion gullies by remote sensing and spatial pattern analysis in black soil region of eastern Kebai. Scientia Geographica Sinica, 27(2): 193-199. (in Chinese)
    [49] Zhang Jiao, Zheng Fenli, Wen Leilei et al., 2011. Methodology of dynamic monitoring gully erosion process using 3D laser scan technology. Bulletin of Soil and Water, 31(6): 89-94. (in Chinese)
    [50] Zhang Peng, Zheng Fenli, Wang Bin et al., 2008. Comparative study of monitoring gully erosion morphology change process by using high precision GPS, leica HDS 3000 laser scanner and needle board method. Bulletin of Soil and Water Conservation, 28(5): 11-15. (in Chinese)
  • [1] WANG Kuifeng.  Evolution of Yellow River Delta Coastline Based on Remote Sensing from 1976 to 2014, China . Chinese Geographical Science, 2019, 20(2): 181-191. doi: 10.1007/s11769-019-1023-5
    [2] WANG Xuecheng, YANG Fei, GAO Xing, WANG Wei, ZHA Xinjie.  Evaluation of Forest Damaged Area and Severity Caused by Ice-snow Frozen Disasters over Southern China with Remote Sensing . Chinese Geographical Science, 2019, 20(3): 405-416. doi: 10.1007/s11769-019-1041-3
    [3] SERASINGHE PATHIRANAGE Inoka Sandamali, Lakshmi N. KANTAKUMAR, SUNDARAMOORTHY Sivanantharajah.  Remote Sensing Data and SLEUTH Urban Growth Model: As Decision Support Tools for Urban Planning . Chinese Geographical Science, 2018, 28(2): 274-286. doi: 10.1007/s11769-018-0946-6
    [4] ZHU Shanyou, LIU Yi, HUA Junwei, ZHANG Guixin, ZHOU Yang, XIANG Jiamin.  Monitoring Spatio-temporal Variance of an Extreme Heat Event Using Multiple-source Remote Sensing Data . Chinese Geographical Science, 2018, 28(5): 744-757. doi: 10.1007/s11769-018-0989-8
    [5] ZHANG Zengxiang, LIU Fang, ZHAO Xiaoli, WANG Xiao, SHI Lifeng, XU Jinyong, YU Sisi, WEN Qingke, ZUO Lijun, YI Ling, HU Shunguang, LIU Bin.  Urban Expansion in China Based on Remote Sensing Technology: A Review . Chinese Geographical Science, 2018, 28(5): 727-743. doi: 10.1007/s11769-018-0988-9
    [6] REN Chunying, WANG Zongming, ZHANG Bai, LI Lin, CHEN Lin, SONG Kaishan, JIA Mingming.  Remote Monitoring of Expansion of Aquaculture Ponds Along Coastal Region of the Yellow River Delta from 1983 to 2015 . Chinese Geographical Science, 2018, 28(3): 430-442. doi: 10.1007/s11769-017-0926-2
    [7] YAN Fengqin, LIU Xingtu, CHEN Jing, YU Lingxue, YANG Chaobin, CHANG Liping, YANG Jiuchun, ZHANG Shuwen.  China's Wetland Databases Based on Remote Sensing Technology . Chinese Geographical Science, 2017, 27(3): 374-388. doi: 10.1007/s11769-017-0872-z
    [8] LIU Kai, DING Hu, TANG Guoan, ZHU A-Xing, YANG Xin, JIANG Sheng, CAO Jianjun.  An Object-based Approach for Two-level Gully Feature Mapping Using High-resolution DEM and Imagery: A Case Study on Hilly Loess Plateau Region, China . Chinese Geographical Science, 2017, 27(3): 415-430. doi: 10.1007/s11769-017-0874-x
    [9] YANG Jiuchun, ZHANG Shuwen, CHANG Liping, LI Fei, LI Tianqi, GAO Yan.  Gully Erosion Regionalization of Black Soil Area in Northeastern China . Chinese Geographical Science, 2017, 27(1): 78-87. doi: 10.1007/s11769-017-0848-z
    [10] LI Hao, Richard M CRUSE, LIU Xiaobing, ZHANG Xingyi.  Effects of Topography and Land Use Change on Gully Development in Typical Mollisol Region of Northeast China . Chinese Geographical Science, 2016, 26(6): 779-788. doi: 10.1007/s11769-016-0837-7
    [11] PENG Guangxiong, DENG Lei, CUI Weihong, MING Tao, SHEN Wei.  Remote Sensing Monitoring of Tobacco Field Based on Phenological Characteristics and Time Series Image―A Case Study of Chengjiang County, Yunnan Province, China . Chinese Geographical Science, 2009, 19(2): 186-193. doi: 10.1007/s11769-009-0186-x
    [12] AN Kai, ZHANG Jinshui, XIAO Yu.  Object-oriented Urban Dynamic Monitoring——A Case Study of Haidian District of Beijing . Chinese Geographical Science, 2007, 17(3): 236-242. doi: 10.1007/s11769-007-0236-1
    [13] XU Han-qiu.  AN ASSESSMENT OF LAND USE CHANGES IN FUQING COUNTY OF CHINA USING REMOTE SENSING TECHNOLOGY . Chinese Geographical Science, 2002, 12(2): 126-135.
    [14] GAO Zhi-qiang, DENG Xiang-zheng.  ANALYSIS ON SPATIAL FEATURES OF LUCC BASED ON REMOTE SENSING AND GIS IN CHINA . Chinese Geographical Science, 2002, 12(2): 107-113.
    [15] HU Yuan-man, JIANG Yan, CHANG Yu, BU Ren-cang, LI Yue-hui, XU Chong-gang.  THE DYNAMIC MONITORING OF HORQIN SAND LAND USING REMOTE SENSING . Chinese Geographical Science, 2002, 12(3): 238-243.
    [16] LIU Ming-liang, ZHUANG Da-fang, LIU Ji-yuan.  FARMLAND AND URBAN AREA DYNAMICS MONITORING IN CHINA USING REMOTE SENSING AND SPATIAL STATISTICS METHODOLOGY . Chinese Geographical Science, 2001, 11(1): 42-49.
    [17] 庄大方, 凌扬荣, Yoshio Awaya.  INTEGRATED VEGETATION CLASSIFICATION AND MAPPING USING REMOTE SENSING AND GIS TECHNIQUES . Chinese Geographical Science, 1999, 9(1): 49-56.
    [18] 刘红辉, 杨小唤, 王乃斌.  REMOTE SENSING BASED ESTIMATION SYSTEM FOR WINTER WHEAT YIELD IN NORTH CHINA PLAIN . Chinese Geographical Science, 1999, 9(1): 40-48.
    [19] 黄铁青, 刘兆礼, 潘瑜春, 张养贞.  LAND COVER SURVEY IN NORTHEAST CHINA USING REMOTE SENSING AND GIS . Chinese Geographical Science, 1998, 8(3): 264-270.
    [20] 张养贞, 常丽萍, 张柏, 张树文, 黄铁青, 刘雅琴.  LAND RESOURCES SURVEY BY REMOTE SENSING AND ANALYSIS OF LAND CARRYING CAPACITY FOR POPULATION IN TUMEN RIVER REGION . Chinese Geographical Science, 1996, 6(4): 342-350.
  • 加载中
计量
  • 文章访问数:  499
  • HTML全文浏览量:  11
  • PDF下载量:  1009
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-14
  • 修回日期:  2014-11-12
  • 刊出日期:  2015-05-27

Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China

doi: 10.1007/s11769-015-0780-z
    基金项目:  Under the auspices of National Natural Science Foundation of China (No. 41271416), Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05090310)
    通讯作者: ZHANG Shuwen.E-mail:zhangshuwen@neigae.ac.cn

摘要: Gully erosion is one of the major causes of land degradation in most areas and attracts increasing attention from researchers. We monitored gullies in the Kebai region in Heilongjiang Province of China by using remote sensing data and found that gully density increased with the increase in slope when the slope was less than 3°. Gully density in sunny slopes or windward slopes was greater than in shady slopes or leeward slopes because of the impacts of freezing and thawing, wind and solar radiation. Specifically, the gully density in northeast slope was the greatest and in southwest was the smallest. Gully density was reduced with increasing slope length and the longer the slope length, the less the gully density changed between 1965 and 2005. Affected by runoff, gullies most easily to occur in concave slopes and the critical elevation for gully erosion was 250-275 m. Moreover, hilly regions had the greatest gully density, followed by tableland regions, whereas the gully density in flatlands was the lowest. However, the gully density of these three types of landforms all increased between 1945 and 2000, and the portion of increase was 57.45% (hill), 52.91% (mesa) and 25.32% (plain), respectively.

English Abstract

ZHANG Shuwen, LI Fei, LI Tianqi, YANG Jiuchun, BU Kun, CHANG Liping, WANG Wenjuan, YAN Yechao. Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China[J]. 中国地理科学, 2015, 25(5): 602-611. doi: 10.1007/s11769-015-0780-z
引用本文: ZHANG Shuwen, LI Fei, LI Tianqi, YANG Jiuchun, BU Kun, CHANG Liping, WANG Wenjuan, YAN Yechao. Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China[J]. 中国地理科学, 2015, 25(5): 602-611. doi: 10.1007/s11769-015-0780-z
ZHANG Shuwen, LI Fei, LI Tianqi, YANG Jiuchun, BU Kun, CHANG Liping, WANG Wenjuan, YAN Yechao. Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China[J]. Chinese Geographical Science, 2015, 25(5): 602-611. doi: 10.1007/s11769-015-0780-z
Citation: ZHANG Shuwen, LI Fei, LI Tianqi, YANG Jiuchun, BU Kun, CHANG Liping, WANG Wenjuan, YAN Yechao. Remote Sensing Monitoring of Gullies on a Regional Scale: A Case Study of Kebai Region in Heilongjiang Province, China[J]. Chinese Geographical Science, 2015, 25(5): 602-611. doi: 10.1007/s11769-015-0780-z
参考文献 (50)

目录

    /

    返回文章
    返回