留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China

WANG Hao LIU Guohua LI Zongshan YE Xin WANG Meng GONG Li

WANG Hao, LIU Guohua, LI Zongshan, YE Xin, WANG Meng, GONG Li. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China[J]. 中国地理科学, 2016, 26(1): 35-47. doi: 10.1007/s11769-015-0762-1
引用本文: WANG Hao, LIU Guohua, LI Zongshan, YE Xin, WANG Meng, GONG Li. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China[J]. 中国地理科学, 2016, 26(1): 35-47. doi: 10.1007/s11769-015-0762-1
WANG Hao, LIU Guohua, LI Zongshan, YE Xin, WANG Meng, GONG Li. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China[J]. Chinese Geographical Science, 2016, 26(1): 35-47. doi: 10.1007/s11769-015-0762-1
Citation: WANG Hao, LIU Guohua, LI Zongshan, YE Xin, WANG Meng, GONG Li. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China[J]. Chinese Geographical Science, 2016, 26(1): 35-47. doi: 10.1007/s11769-015-0762-1

Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China

doi: 10.1007/s11769-015-0762-1
基金项目: Under the auspices of the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences (No. XDA05060104)
详细信息
    通讯作者:

    LIU Guohua. E-mail:ghliu@rcees.ac.cn

Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China

Funds: Under the auspices of the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences (No. XDA05060104)
More Information
    Corresponding author: LIU Guohua. E-mail:ghliu@rcees.ac.cn
  • 摘要: In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity (NPP) has become a hot research topic. However, two opposing views have been presented in this research area:global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China (ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit (CRU) climatic data and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite remote data, for the years 2000-2010. The results indicate that:for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.
  • [1] Brohan P, Kennedy J J, Harris I et al., 2006. Uncertainty estimates in regional and global observed temperature change:a new data set from 1850. Journal of Geophysical Research-Atmospheres, 111(D12). doi: 12110.11029/12005JD006548
    [2] Cao M K, Woodward F I, 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393(6682):249-252. doi: 10.1038/30460
    [3] Carol K A, 2009. Spring 2007 warmth and frost:phenology, damage and refoliation in a temperate deciduous forest. Func-tional Ecology, 23(6):1031-1039. doi:10.1111/j.1365-2435. 2009.01587.x
    [4] Chen F H, Chen J H, Holmes J et al., 2010. Moisture changes over the last millennium in arid central Asia:a review, synthesis and comparison with monsoon region. Quaternary Science Reviews, 29(7-8):1055-1068. doi:10.1016/j.quascirev.2010. 01.005
    [5] Chen Fujun, Shen Yanjun, Li Qian et al., 2011. Spatio-temporal variation analysis of ecological systems NPP in China in past 30 years. Scientia Geographica Sinica, 31(11):1409-1411. (in Chinese)
    [6] Chen Yanmei, Gao Jixi, Feng Chaoyang et al., 2012. Temporal and spatial distribution of vegetation Net Primary Productivity (NPP) in the years from 1982 to 2010 in Hulunbeier. Journal of Ecology and Rural Environment, 28(6):647-653. (in Chinese)
    [7] Cheng Man, Wang Ranghui, Xue Hongxi et al., 2012. Effects of drought on ecosystem net primary production in northwestern China. Journal of Arid Land Resources and Environment, 26(6):1-7. (in Chinese)
    [8] Ciais P h, Reichstein M, Viovy N et al., 2005. Europe-wide re-duction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058):529-533. doi:10.1038/nature 03972
    [9] Dai A G, 2011. Drought under global warming:a review. Wiley Interdisciplinary Reviews-Climate Change, 2(1):45-65. doi: 10.1002/wcc.81.
    [10] Del S G, Parton W, Stohlgren T et al., 2008. Global potential net primary production predicted from vegetation class, precipita-tion, and temperature. Ecological Society of America, 89(8):2117-2126. doi: 10.1890/07-0850.1.
    [11] Department of Geography, Northwest Normal University, 1984. Chinese Atlas of Physical Geography. Beijing:China Carto-graphic Publishing House.
    [12] Eccel E, Rea R, Caffarra A et al., 2009. Risk of spring frost to apple production under future climate scenarios:the role of phenological acclimation. International Journal of Biometeor-ology, 53(3):273-286. doi: 10.1007/s00484-009-0213-8
    [13] Friend A D, Lucht W, Rademacher T T et al., 2014. Carbon resi-dence time dominates uncertainty in terrestrial vegetation re-sponses to future climate and atmospheric CO2. PNAS, 111(9):3280-3285. doi: 10.1073/pnas.1222477110
    [14] Gao Q Z, Li Y, Wan Y F et al., 2009. Dynamics of alpine grass-land NPP and its response to climate change in Northern Tibet. Climate Change, 97(4):515-528. doi: 10.1007/s10584-009-9617-z
    [15] Gao Rong, Wei Zhigang, Dong Wenjie, 2004. Analysis of the cause of the differentia in interannual variation between snow cover and seasonal frozen soil in the Tibetan Plateau. Journal of Glaciology and Geocryoloy, 26(2):153-159. (in Chinese)
    [16] Gao Zhiqiang, Liu Jiyuan, Cao Mingkui et al., 2004. Impacts of land use and climate change on regional net primary produc-tivity. Acta Geographica Sinica, 59(4):581-591. (in Chinese)
    [17] Guo Zhixing, Zhang Xiaoning, Wang Zongming et al., 2010. Responses of vegetation phenology in Northeast China to cli-mate change. Chinese Journal o f Ecology, 29(3):578-585. (in Chinese)
    [18] Greco S, Moss R H, Viner D et al., 1994. Climate Scenarios and Socioeconomic Projections for IPCC WG Ⅱ Assessment. Washington, DC:IPCC and UNEP.
    [19] Griffin J J, Ranney T G, Pharr D M, 2004. Heat and drought in-fluence photosynthesis, water relations, and soluble carbohy-drates of two ecotypes of redbud (Cercis canadensis). Journal of the American Society for Hortcultural Science, 129(4):497-502.
    [20] Hicke J A, Asner G P, Randerson J T et al., 2002. Trends in north American net primary productivity derived from satellite observations, 1982-1999. Global Biogeochemical Cycles, 16(2):1-14. doi: 10.1029/2001GB001550
    [21] Huang M, Peng G B, Leslie L M et al., 2005. Seasonal and re-gional temperature changes in China over the 50 year period 1951-2000. Meteorology and Atmospheric Physics, 89(1-4):105-115. doi: 10.1007/s00703-005-0124-0
    [22] Houghton J T, Ding Y, Griggs D J et al., 2001. Climate Change 2001:The Scientific Basis. Cambridge University Press, Cam-bridge.
    [23] Houghton R A, 2002. Terrestrial carbon sinks-uncertain explana-tions. Biologist, 49(4):155-160.
    [24] Houghton R A, Hackler J L, Lawrence K T, 1999. The U.S. car-bon budget:contributions from land-use change. Science, 7(5427):574-578. doi: 10.1126/science.285.5427.574
    [25] IPCC (Intergovernmental Panel on Climate Change), 2007. Summary for Policymakers of the Synthesis Report of the IPCC Fourth Assessment Report. UK Cambridge:Cambridge University Press.
    [26] Jones P D, Moberg A, 2003. Hemispheric and large-scale surface air temperature variations:an extensive and an update to 2001. Journal of Climate, 16(3):206-223. doi: 10.1175/1520-0442(2003)
    [27] Keeling C D, Chin J F S, Whorf T P, 1996. Increased activity of northern vegetation in inferred from atmospheric CO2 meas-urements. Nature, 382(6587):146-149. doi: 10.1038/382146a0
    [28] Knapp A K, Smith M D, 2001. Variation among biomes in tem-poral dynamics of aboveground primary production. Science, 291(5503):481-484. doi: 10.1126/science.291.5503.481
    [29] Li Fei, Zhao Jun, Zhao Chunyan et al., 2011. Simulating and analyzing dynamic change of potential vegetation in arid areas of Northwest China. Acta Prataculturae Sinica, 20(4):42-50. (in Chinese)
    [30] Li Junyuan, Xu Weixin, Cheng Zhigang et al., 2012. Spa-tial-temporal changes of climate and vegetation cover in the semi-arid and arid regions of China during 1982-2006. Ecology and Environmental Sciences, 21(2):268-272. (in Chinese)
    [31] Li Wanyuan, Qian Zhengan, 2005. Temporal and spatial feature analyses of winter and summer surface air temperature to in CMASA, Part (I):January. Plateau Meteorology, 24(6):889-897. (in Chinese)
    [32] Li Yingnian, Bao Xinkui, Cao Guangmin, 2001. Comparison of the earth temperature between fiborthic histosols and Mat-Cryic cambisols in Tibet Plateau. Acta Pedologica Sinica, 38(2):145-152. (in Chinese)
    [33] Li Yingnian, Guan Dingguo, Zhao Liang et al., 2005. Seasonal frozen soil and its effect on vegetation production in Haibei alpine meadow. Journal of Glaciology and Geoceyology, 27(3):311-319. (in Chinese)
    [34] Li Z S, Liu G H, Fu B J et al., 2011. The potential influence of seasonal climate variables on the net primary production of forests in Eastern China. Environmental Management, 48(6):1173-1181. doi: 10.1007/s00267-011-9710-8
    [35] Liu B H, Xu M, Henderson M et al., 2004. Taking China's tem-perature:daily range, warming trends, and regional variations, 1955-2000. Journal of Climate, 17(22):4453-4462. doi:10. 1175/3230.1
    [36] Mabutt, J A, 1989. Impacts of carbon dioxide warming on climate and man in the semi-arid tropics. Climatic Change, 15(1-2):191-221. doi: 10.1007/BF00138852
    [37] Mansur Sabit, 2012. Climatic characteristics of cold wave and its impact on agriculture in southern Xinjiang in recent 60 years. Journal of Natural Resources, 27(12):2145-2152. (in Chinese)
    [38] Melillo J M, McGuire A D, Kicklighter D W et al., 1993. Global climate change and terrestrial net primary production. Nature, 363(6426):234-240. doi: 10.1038/363234a0
    [39] Mitchell T D, Jones P D, 2005. An improved method of con-structing a database of monthly climate observations and asso-ciated high-resolution grids. International Journal of Clima-tology, 25(6):693-712. doi: 10.1002/joc.1181
    [40] Miyashita K, Tanakamaru S, Maitani T et al., 2005. Recovery responses of photosynthesis, transpiration, and stomatal con-ductance in kidney bean following drought stress. Environ-mental and Experimental Botany, 53(2):205-214. doi:10. 1016/j.envexpbot.2004.03.015
    [41] Myneni R B, Dong J, Tucker C J et al., 2001. A large carbon sink in the woody biomass of northern forests. Proceedings of the National Academy of Sciences of the United States of America, 98(26):14784-14789. doi: 10.1073/pnas.261555198
    [42] Narisma G T, Foley J A, Licker R et al., 2007. Abrupt changes in rainfall during the twentieth century. Geophysical Research Letters, 34(6):L06710. doi: 10.1029/2006GL028628
    [43] Nemani R R, Keeling C D, Hashimoto H et al., 2003. Cli-mate-driven increases in global terrestrial net primary produc-tion from 1982 to 1999. Science, 300(5625):1560-1563. doi: 10.1126/science.1082750
    [44] Nemani R R, White M, Thornton P et al., 2002. Recent trends in hydrologic cycle have enhanced terrestrial carbon sink in the US. Geophysical Research Letters, 29(10):106-1-106-4. doi: 10.1029/2002GL014867
    [45] Peng Qin, Qi Yuchun, Dong Yunshe et al., 2012. Responses of carbon cycling key processes to precipitation changes in arid and semiarid grassland ecosystems:a review. Progress in Ge-ography, 31(11):1510-1518. (in Chinese)
    [46] Piao Shilong, Fang Jingyun, Guo Qinghua, 2001. Terrestrial net primary production and its spatiotemporal patterns in China during 1982-1999. Acta Scientiarum Naturalium Universitatis Pekinensis, 37(4):563-569. (in Chinese)
    [47] Piao S L, Ciais P, Friedlingstein Pierre et al., 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451(7174):49-52. doi: 10.1038/nature06444
    [48] Piao S L, Fang J Y, Chen A P, 2003. Seasonal dynamics of ter-restrial net primary production in response to climate changes in China. Acta Botanica Sinica, 45(3):269-275.
    [49] Ren Chaoxia, Yang Dayuan, 2006. Variations trend of climate of Northwest area in China in the last 50 Years. Quaternary Sci-ences, 26(2):299-300. (in Chinese)
    [50] Ren Peigui, Zhang Bo, Zhang Tiaofeng et al., 2014. Trend Anal-ysis of Meteorological Drought Change in Northwest China Based on Standardized Precipitation Evapotranspiration Index. Bulletin of Soil and Water Conservation, 34(1):182-187. (in Chinese)
    [51] Shi Yafeng, Shen Yongping, Li Dongliang et al., 2003. Discus-sion on the present climate change from warm-dry to warm-wet in North-west China. Quaternary Sciences, 23(2):152-164. (in Chinese)
    [52] Shi Y F, Shen Y P, Kang E et al., 2007. Recent and future climate change in northwest china. Climatic Change, 80(3-4):379-393. doi: 10.1007/s10584-006-9121-7
    [53] Tao Bo, Li Kerang, Shao Xuemei et al., 2003. Temporal and spatial pattern of net primary production of terrestrial ecosystems in China. Acta Geographica Sinica, 58(3):372-380. (in Chinese)
    [54] Tian H, Melillo J M, Kicklighter D W et al., 1999. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus, 51(2):414-452. doi: 10.1034/j.1600-0889.1999.00021.x
    [55] Wang Genxu, Chen Guodong, Xu Zhongmin, 1999. The utilization of water resource and its influence on eco-environment in the northwest arid area of China. Journal of Natural Resources, 14(2):109-116. (in Chinese)
    [56] Wang Lei, Ding Jingjing, Ji Yonghua et al., 2009. Spatiotemporal pattern of NPP in terrestrial ecosystem of China from 1981 to 2000. Journal of Jiangsu Forestry Science & Technology, 36(6):1-5. (in Chinese)
    [57] Wang X H, Piao S L, Ciais P et al., 2011. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proceedings of the National Academy of Sciences of the United States of America, 108(4):1240-1245. doi: 10.1073/pnas.1014425108
    [58] Wang Zunya, Ding Yihui, 2006. Climate change of the cold wave frequency of China in the last 53 years and the possible reasons. Chinese Journal of Atmospheric Sciences, 30(6):1068-1076. (in Chinese)
    [59] Wen Xinyu, Wang Shaowu, Zhu Jinhong, 2006. An overview of China climate change over the 20th century using UK UEA/CRU high resolution grid data. China Journal of At-mospheric Sciences, 30(5):894-903. (in Chinese)
    [60] Yao Junqiang, Yang Qing, Chen Yaning et al., 2013. Climate change in arid areas of Northwest China in past 50 years and its effects on the local ecological environment. Chinese Journal of Ecology, 32(5):1283-1291. (in Chinese)
    [61] Yu Haiyan, Liu Shuhua, Zhao Na et al., 2011. Characteristics of air temperature and precipitation in different regions of China from 1951 to 2009. Journal of Meteorology and Environment, 27(4):1-11. (in Chinese)
    [62] Yu X F, Wang Q K, Yan H M et al., 2014. Forest phenology dynamics and its responses to meteorological variations in Northeast China. Advances in Meteorology, Article ID 592106, 12. doi: 10.1155/2014/592106
    [63] Zha Y, Gao J, Zhang Y, 2005. Grassland productivity in an alpine environment in response to climate change. Area, 37(3):332-340. doi: 10.1111/j.1475-4762.2005.00637.x
    [64] Zhai P M, Sun A J, Ren F M et al., 1999. Changes of climate extremes in China. Climatic Change, 42(1):203-218. doi: 10.1023/A:1005428602279
    [65] Zhang B Q, Wu P T, Zhao X N et al., 2014. Spatiotemporal anal-ysis of climate variability (1971-2010) in spring and summer on the Loess Plateau, China. Hydrological Processes, 28(4):1689-1702. doi: 10.1002/hyp.9724
    [66] Zhang G L, Zhang Y J, Dong J W et al., 2013. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. PNAS, 110(11):4309-4314. doi: 10.1073/pnas.1210423110
    [67] Zhao M S, Heinseh F A, Nemani R R et al., 2005. Improvements of the MODIS terrestrial gross and net primary production global dataset. Remote Sensing of Environment, 95(2):164-176. doi: 10.1016/j.rse.2004.12.011
    [68] Zhao M S, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994):940-943. doi:10.1126/science. 1192666
    [69] Zheng Yuanrun, Zhou Guangsheng, Zhang Xinshi et al., 1997. Sensitivity of terrestrial ecosystem to global change in China. Acta Botanica Sinica, 39(9):837-840. (in Chinese)
    [70] Zhou G S, Wang Y H, Jiang Y L et al., 2002. Estimating biomass and net primary production from forest inventory data:a case study of China's Larixforests. Forest Ecology and Manage-ment, 169(1-2):149-157. doi: 10.1016/S0378-1127(02)00305-5
    [71] Zhou Guangsheng, Zhang Xinshi, 1996. Study on NPP of natural vegetation in China under global climate change. Acta Phytoecologica Sinica, 20(1):11-19. (in Chinese)
    [72] Zhou L M, Tucker C J, Kaufmann R K et al., 2001. Variations in northern vegetation activity inferred from satellite data of veg-etation index during 1981 to 1999. Journal of Geophysical Research Atmospheres, 106(D17):20069-20083. doi: 10.1029/2000JD000115
  • [1] Lun BAO, Lingxue YU, Ying LI, Fengqin YAN, Vincent LYNE, Chunying REN.  Climate Change Impacts on Agroecosystems in China: Processes, Mechanisms and Prospects . Chinese Geographical Science, 2023, 33(4): 583-600. doi: 10.1007/s11769-023-1362-0
    [2] Hongzhu HAN, Jianjun BAI, Gao MA, Jianwu YAN, Xiaohui WANG, Zhijie TA, Pengtao WANG.  Seasonal Responses of Net Primary Productivity of Vegetation to Phenological Dynamics in the Loess Plateau, China . Chinese Geographical Science, 2022, 32(2): 340-357. doi: 10.1007/s11769-022-1270-8
    [3] Liang LIU, Jingyun GUAN, Wanqiang HAN, Xifeng JU, Chen MU, Jianghua ZHENG.  Quantitative Assessment of the Relative Contributions of Climate and Human Factors to Net Primary Productivity in the Ili River Basin of China and Kazakhstan . Chinese Geographical Science, 2022, 32(6): 1069-1082. doi: 10.1007/s11769-022-1311-3
    [4] HE Binbin, SHENG Yu, CAO Wei, WU Jichun.  Characteristics of Climate Change in Northern Xinjiang in 1961-2017, China . Chinese Geographical Science, 2020, 30(2): 249-265. doi: 10.1007/s11769-020-1104-5
    [5] LIU Yangyang, YANG Yue, WANG Qian, KHALIFA Muhammad, ZHANG Zhaoying, TONG Linjing, LI Jianlong, SHI Aiping.  Assessing the Dynamics of Grassland Net Primary Productivity in Re-sponse to Climate Change at the Global Scale . Chinese Geographical Science, 2019, 20(5): 725-740. doi: 10.1007/s11769-019-1063-x
    [6] YU Xiaofei, DING Shanshan, ZOU Yuanchun, XUE Zhenshan, LYU Xianguo, WANG Guoping.  Review of Rapid Transformation of Floodplain Wetlands in Northeast China: Roles of Human Development and Global Environmental Change . Chinese Geographical Science, 2018, 28(4): 654-664. doi: 10.1007/s11769-018-0957-3
    [7] ZHOU Lei, WANG Shaoqiang, CHI Yonggang, WANG Junbang.  Drought Impacts on Vegetation Indices and Productivity of Terrestrial Ecosystems in Southwestern China During 2001-2012 . Chinese Geographical Science, 2018, 28(5): 784-796. doi: 10.1007/s11769-018-0967-1
    [8] CHEN Tiantian, PENG Li, LIU Shaoquan, WANG Qiang.  Spatio-temporal Pattern of Net Primary Productivity in Hengduan Mountains area, China:Impacts of Climate Change and Human Activities . Chinese Geographical Science, 2017, 27(6): 948-962. doi: 10.1007/s11769-017-0895-5
    [9] SUN Binfeng, ZHAO Hong, WANG Xiaoke.  Effects of Drought on Net Primary Productivity: Roles of Temperature, Drought Intensity, and Duration . Chinese Geographical Science, 2016, 26(2): 270-282. doi: 10.1007/s11769-016-0804-3
    [10] MAO Dehua, WANG Zongming, WU Changshan, SONG Kaishan, REN Chunying.  Examining Forest Net Primary Productivity Dynamics and Driving Forces in Northeastern China During 1982-2010 . Chinese Geographical Science, 2014, 0(6): 631-646. doi: 10.1007/s11769-014-0662-9
    [11] YE Yu, FANG Xiuqi.  Boundary Shift of Potential Suitable Agricultural Area in Farming-grazing Transitional Zone in Northeastern China under Background of Climate Change During 20th Century . Chinese Geographical Science, 2013, 23(6): 655-665. doi: 10.1007/s11769-013-0638-1
    [12] WANG Huaijun, CHEN Yaning, LI Weihong, DENG Haijun.  Runoff Responses to Climate Change in Arid Region of Northwestern China During 1960-2010 . Chinese Geographical Science, 2013, 23(3): 286-300. doi: 10.1007/s11769-013-0605-x
    [13] GONG Huili, MENG Dan, LI Xiaojuan, ZHU Feng.  Soil Degradation and Food Security Coupled with Global Climate Change in Northeastern China . Chinese Geographical Science, 2013, 23(5): 562-573. doi: 10.1007/s11769-013-0626-5
    [14] ZHANG Lei, LU Wenxi, YANG Qingchun, AN Yongkai, LI Di, GONG Lei.  Hydrological Impacts of Climate Change on Streamflow of Dongliao River Watershed in Jilin Province, China . Chinese Geographical Science, 2012, 22(5): 522-530.
    [15] WEN Xiaohao LI Baosheng WANG Fengnian et al..  Grain-size Characteristics and Climate Variability in TMS5e Sequence of Tumen Section in Southern Tengger Desert, Northwestern China . Chinese Geographical Science, 2012, 22(1): 48-62.
    [16] ZHAO Junfang YAN Xiaodong JIA Gensuo.  Simulating the net carbon budget of forest ecosystems and its response to climate change in Northeast China using the improved forest carbon budget model FORCCHN . Chinese Geographical Science, 2012, 22(1): 29-41.
    [17] LIU Delin, LIU Xianzhao, LI Bicheng, ZHAO Shiwei, LI Xiguo.  Multiple Time Scale Analysis of River Runoff Using Wavelet Transform for Dagujia River Basin, Yantai, China . Chinese Geographical Science, 2009, 19(2): 158-167. doi: 10.1007/s11769-009-0158-1
    [18] XU Jianhua, CHEN Yaning, LI Weihong, JI Minhe, DONG Shan, HONG Yulian.  Wavelet Analysis and Nonparametric Test for Climate Change in Tarim River Basin of Xinjiang During 1959-2006 . Chinese Geographical Science, 2009, 19(4): 306-313. doi: 10.1007/s11769-009-0306-7
    [19] WANG Hao, XU Shiguo, SUN Leshi.  Effects of Climatic Change on Evapotranspiration in Zhalong Wetland, Northeast China . Chinese Geographical Science, 2006, 16(3): 265-269.
    [20] 叶佰生, 陈克恭.  A MODEL SIMULATING THE PROCESSES IN RESPONSES OF GLACIER AND RUNOFF TO CLIMATIC CHANGE─A Case Study of Glacier No. 1 in the ürümqi River, China . Chinese Geographical Science, 1997, 7(3): 243-250.
  • 加载中
计量
  • 文章访问数:  572
  • HTML全文浏览量:  29
  • PDF下载量:  790
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-26
  • 修回日期:  2014-11-21
  • 刊出日期:  2016-01-27

Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China

doi: 10.1007/s11769-015-0762-1
    基金项目:  Under the auspices of the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences (No. XDA05060104)
    通讯作者: LIU Guohua. E-mail:ghliu@rcees.ac.cn

摘要: In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity (NPP) has become a hot research topic. However, two opposing views have been presented in this research area:global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China (ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit (CRU) climatic data and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite remote data, for the years 2000-2010. The results indicate that:for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.

English Abstract

WANG Hao, LIU Guohua, LI Zongshan, YE Xin, WANG Meng, GONG Li. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China[J]. 中国地理科学, 2016, 26(1): 35-47. doi: 10.1007/s11769-015-0762-1
引用本文: WANG Hao, LIU Guohua, LI Zongshan, YE Xin, WANG Meng, GONG Li. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China[J]. 中国地理科学, 2016, 26(1): 35-47. doi: 10.1007/s11769-015-0762-1
WANG Hao, LIU Guohua, LI Zongshan, YE Xin, WANG Meng, GONG Li. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China[J]. Chinese Geographical Science, 2016, 26(1): 35-47. doi: 10.1007/s11769-015-0762-1
Citation: WANG Hao, LIU Guohua, LI Zongshan, YE Xin, WANG Meng, GONG Li. Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China[J]. Chinese Geographical Science, 2016, 26(1): 35-47. doi: 10.1007/s11769-015-0762-1
参考文献 (72)

目录

    /

    返回文章
    返回