留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China

HU Guojie ZHAO Lin LI Ren WU Tonghua WU Xiaodong PANG Qiangqiang XIAO Yao QIAO Yongping SHI Jianzong

HU Guojie, ZHAO Lin, LI Ren, WU Tonghua, WU Xiaodong, PANG Qiangqiang, XIAO Yao, QIAO Yongping, SHI Jianzong. Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China[J]. 中国地理科学, 2015, 25(6): 713-727. doi: 10.1007/s11769-015-0733-6
引用本文: HU Guojie, ZHAO Lin, LI Ren, WU Tonghua, WU Xiaodong, PANG Qiangqiang, XIAO Yao, QIAO Yongping, SHI Jianzong. Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China[J]. 中国地理科学, 2015, 25(6): 713-727. doi: 10.1007/s11769-015-0733-6
HU Guojie, ZHAO Lin, LI Ren, WU Tonghua, WU Xiaodong, PANG Qiangqiang, XIAO Yao, QIAO Yongping, SHI Jianzong. Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China[J]. Chinese Geographical Science, 2015, 25(6): 713-727. doi: 10.1007/s11769-015-0733-6
Citation: HU Guojie, ZHAO Lin, LI Ren, WU Tonghua, WU Xiaodong, PANG Qiangqiang, XIAO Yao, QIAO Yongping, SHI Jianzong. Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China[J]. Chinese Geographical Science, 2015, 25(6): 713-727. doi: 10.1007/s11769-015-0733-6

Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China

doi: 10.1007/s11769-015-0733-6
基金项目: Under the auspices of National Major Scientific Project of China (No. 2013CBA01803), Science Fund for Creative Research Groups of National Natural Science Foundation of China (No. 41121001), National Natural Science Foundation of China (No. 41271081), Foundation of One Hundred Person Project of Chinese Academy of Sciences (No. 51Y251571)
详细信息
    通讯作者:

    ZHAO Lin. E-mail: linzhao@lzb.ac.cn

Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China

Funds: Under the auspices of National Major Scientific Project of China (No. 2013CBA01803), Science Fund for Creative Research Groups of National Natural Science Foundation of China (No. 41121001), National Natural Science Foundation of China (No. 41271081), Foundation of One Hundred Person Project of Chinese Academy of Sciences (No. 51Y251571)
More Information
    Corresponding author: ZHAO Lin. E-mail: linzhao@lzb.ac.cn
  • 摘要: Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global warming. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water exchanges between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thawing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeper and permafrost degradation.
  • [1] Alexeev V A, Nicolsky D J, Romanovsky V E et al., 2007. An evaluation of deep soil configurations in the CLM3 for improved representation of permafrost. Geophysical Research Letters, 34(9): L090502. doi:  10.1029/2007GL029536
    [2] Bowling L C, Lettenmaier D P, Nijssen B et al., 2003. Simulation of high-latitude hydrological processes in the Torne-Kalix Basin: PILPS phase 2(e)3: Equivalent model representation and sensitivity experiments. Global and Planetary Change, 38(1-2): 55-71. doi:  10.1016/S0921-8181(03)00005-5
    [3] Cheng G D, Wu T H, 2007. Responses of permafrost to climate change and their environment significance, Qinghai-Tibet Plateau. Journal of Geophysical Research, 112 (F2): F02S03. doi:  10.1029/2006JF000631
    [4] Cheng Guodong, 1990. Recent development of geocryological study in China. Acta Geographica Sinica, 45(2): 220-223. (in Chinese)
    [5] Cheng Guodong, 1998. Glaciology and geocryology of China in the past 40 years: Progress and prospect. Journal of Glaciology and Geocryology, 20(3): 213-226. (in Chinese)
    [6] Cheng Guodong, Zhao Lin, 2000. The problems associated with permafrost in the development of the Qinghai-Xizang Plateau. Quaternary Sciences, 20(6): 521-531. (in Chinese)
    [7] Eckersten H, Blomback K, Katterer T et al., 2001. Modelling C, N, water and heat dynamics in winter wheat under climate change in southern Sweden. Agriculture Ecosystems & Environment, 86(3): 221-235. doi:  10.1016/S0167-8809(00)00284-X
    [8] Gao Z Q, Chae N, Kim J et al., 2004. Modeling of surface energy partitioning, surface temperature and soil wetness in the Tibet prairie using the simple biosphere model 2(SiB2). Journal of Geophysical Research, 102(D06): 1-11. doi: 10.1029/2003JD 004089
    [9] Harlan R L, 1973. Analysis of coupled heat-fluid transport in partially frozen soil. Water Resources Research, 9(5): 1314-1323. doi:  10.1029/WR009i005p01314
    [10] He Ping, Cheng Guodong, Zhu Yuanlin, 2001. The progress of study on heat and mass transfer in freezing soils. Journal of Glaciology and Geocryology, 23(1): 92-98. (in Chinese)
    [11] Henderson-Sellers A, Pitman A J, Love P K et al., 1995. The project for intercomparison of land-surface parameterization schemes (PILPS)-phase-2 and phase-3. Bulletin of the American Meteorological Society, 76(4): 489-503.
    [12] Henderson-Sellers A, Yang Z L, Dickinson R E, 1993. The project for intercomparison of land-surface parameterization schemes. Bulletin of the American Meteorological Society, 74(7): 1335-1350.
    [13] Jansson P E, Karlberg L, 2004. Theory and practice of coupled heat and mass transfer model for soil-plant-atmosphere system. In: Zhang Hongjiang et al. (eds.). Translation. Beijing: Science Press, 1-50. (in Chinese)
    [14] Jansson P E, Moon D, 2001. A coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environmental Modelling & Software, 16(1): 37-46. doi:  10.1016/S1364-8152(00)00062-1
    [15] Li X, Cheng G D, Jin H J et al., 2008. Cryospheric change in China. Global and Planetary Change, 62: 210-218.
    [16] Loumagne C, Chkir N, Normand M, 1996. Introduction of the soil vegetation-atmospheric continuum in a conceptual rainfall-runoff model. Hydrological Science Journal, 41(6): 889-902.
    [17] Luo Jinming, Deng Wei, Zhang Xiaoping et al., 2008. Variation of water and salinity in sodic saline soil during frozen-thawing season. Advances in Water Sciences, 19(4): 559-566. (in Chinese)
    [18] Luo Siqiong, Lv Shihua, Zhang Yu et al., 2008. Simulation analysis on land surface process of BJ site of central Tibet Plateau using CoLM. Plateau Meteorology, 27(2): 259-271. (in Chinese)
    [19] Mao Xuesong, Hu Changshun, Dou Mingjian et al., 2003. Dynamic observation and analysis of moisture and temperature field coupling process in freezing soil. Journal of Glaciology and Geocryology, 25(1): 55-59. (in Chinese)
    [20] McGechan M B, Graham R, Vinten A J A et al., 1997. Parameter selection and testing the soil water model SOIL. Journal of Hydrology, 195(1-4): 312-334.
    [21] Nassar I N, Horton R, Flerchinger G N, 2000. Simultaneous heat and mass transfer in soil columns exposed to freezing/thawing conditions. Soil Science, 165(3): 208-216.
    [22] Nicolsky D J, Romanovsky V E, Alexeev V A et al., 2007. Improved modeling of permafrost dynamics in a GCM land surface scheme. Geophysical Research Letters, 34(8): L080501. doi:  10.1029/2007GL029525
    [23] Riseborough D W, Shiklomanov N I, Etzelmuller B et al., 2008. Recent advances in permafrost modeling. Permafrost and Periglacial Processes, 19(2): 137-156. doi: 10.1002/ ppp.615
    [24] Scherler M, Hauck C, Hoelzle M et al., 2010. Melt water infiltration into the frozen active layer at an Alpine permafrost site. Permafrost and Perglacial Process, 21(4): 325-334.
    [25] Shoop S A, Bigl S R, 1997. Moisture migration during freeze and thaw of unsaturated soils: Modeling and large scale experiments. Cold Regions Science and Technology, 25(1): 33-45. doi: 10.1016/S0165-232X (96)00015-8
    [26] Wang Chenghai, Shi Rui, 2007. Simulation of the land surface processes in the western Tibet Plateau in summer. Journal of Glaciology and Geocryology, 29(1): 73-81. (in Chinese)
    [27] Wang Qingchun, Li Lin, Li Dongliang et al., 2005. Response of permafrost over Qinghai Plateau to climate warming. Plateau Meteorology, 24(5): 708-713. (in Chinese)
    [28] Wu Q B, Cheng G D, Ma W et al., 2006. Technical approaches on permafrost thermal stability for Qinghai-Tibet Railway. Geomechanics and Geoengineering, 1(2): 119-127. doi: 10.1080/ 17486020600777861
    [29] Wu Q B, Liu Y J, 2004. Ground temperature monitoring and its recent change in Qinghai-Tibet Plateau. Cold Regions Science and Technology, 38(2-3): 85-92. doi: 10.1016/S0165-232X (03)00064-8
    [30] Wu Q B, Zhang T J, 2008. Recent permafrost warming on the Qinghai-Tibet Pleateau. Journal of Geophysical Research, 113: D13108.
    [31] Wu Qingbai, Shen Yongping, Shi Bin, 2003. Relationship between frozen soil together with its water-heat process and ecological environment in the Tibet Plateau. Journal of Glaciology and Geocryology, 25(3): 250-255. (in Chinese)
    [32] Wu S H, Jansson P E, Zhang X Y, 2011a. Modeling temperature, moisture and surface heat balance in bare soil under seasonal frost conditions in China. European of Journal of Soil Science, 62(6): 780-796. doi: 10.1111/j. 1365-2389.2011.01397.x
    [33] Wu S H, Jansson P E, Kolari P, 2012. The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal scots pine ecosystem. Agricultural and Forest Meteorology, 156: 85-103. doi: 10.1016/j.agrformet.2012. 01.006
    [34] Xiao Y, Zhao L, Dai Y J et al., 2013. Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibet) Plateau. Cold Regions Science and Technology, 87(4): 68-77. doi:  10.1016/j.coldregions.2012.12.004
    [35] Xiao Yao, Zhao Lin, Li Ren et al., 2011. Seasonal variation characteristics of surface energy budget components in permafrost regions of northern Tibet Plateau. Journal of Glaciology and Geocryology, 33(5): 1033-1037. (in Chinese)
    [36] Xu Xuezu, Wang Jiacheng, Zhang Lixin, 2001. Physics of Frozen Soils. Beijing: Science Press, 1-30. (in Chinese)
    [37] Yang Jianping, Ding Yongjian, Chen Rensheng et al., 2004. Permafrost change and its effect on eco-environment in the source regions of the Yangtze and Yellow Rivers. Journal of Mountain Science, 22(3): 278-285. (in Chinese)
    [38] Yang Meixue, Yao Tandong, 1998. A review of the study on the impact of snow cover in the Tibet an Plateau on Asian Monsoon. Journal of Glaciology and Geocryology, 20(2): 14-19. (in Chinese)
    [39] Yang Yong, Chen Rensheng, Ji Xibin et al., 2010. Heat and water transfer processes on alpine meadow frozen grounds of Heihe mountainous in Northwest China. Advances in Water Science, 21(1): 30-34. (in Chinese)
    [40] Yao J M, Zhao L, Ding Y J et al., 2008. The surface energy budget and evapotranspiration in the Tanggula region on the Tibet Plateau. Cold Regions Science and Technology, 52(1): 326-340. doi:  10.1016/j.coldregions.2007.04.001
    [41] Zhang S L, Lövdahl L, Grip H et al., 2007. Modelling the effects of mulching and fallow cropping on water balance in the Chinese Loess Plateau. Soil & Tillage Research, 100(2-3): 311-319. doi:  10.1016/j.fcr.2006.08.006
    [42] Zhang Yanwu, Lv Shihua, Li Dongliang et al., 2003. Numerical simulation of freezing soil process on Qinghai-Xizang Plateau in early winter. Plateau Meteorology, 22(5): 471-477. (in Chinese)
    [43] Zhang Yu, Song Meihong, Lv Shihua et al., 2003. Frozen soil parameterization scheme coupled with mesoscale model. Journal of Glaciology and Geocryology, 25(5): 541-546. (in Chinese)
    [44] Zhao Lin, 2004. The Freezing-thawing Processes of Active Layer and Changes of Seasonally Frozen Ground on the Tibet Plateau. Beijing: Chinese Academy of Sciences, 30-50. (in Chinese)
    [45] Zhao Lin, Li Ren, Ding Yongjian, 2008. Simulation on the soil water-thermal characteristics of the active layer in Tanggula range. Journal of Glaciology and Permafrost Engineering, 30(6): 930-937. (in Chinese)
    [46] Zhou J, Kinzelbach W, Cheng G D et al., 2013. Monitoring and modelling the influence of snow pack and organic soil on a permafrost active layer, Qinghai-Tibet Plateau of China. Cold Regions Science and Technology, 90-91: 38-52. doi: 10.1016/ j.coldregions.2013.03.003
  • [1] WANG Rui, DONG Zhibao, ZHOU Zhengchao.  Different Responses of Vegetation to Frozen Ground Degradation in the Source Region of the Yellow River from 1980 to 2018 . Chinese Geographical Science, 2020, 30(4): 557-571. doi: 10.1007/s11769-020-1135-y
    [2] CHEN Si, ZHAO Kai, JIANG Tao, LI Xiaofeng, ZHENG Xingming, WAN Xiangkun, ZHAO Xiaowei.  Predicting Surface Roughness and Moisture of Bare Soils Using Multiband Spectral Reflectance Under Field Conditions . Chinese Geographical Science, 2018, 28(6): 986-997. doi: 10.1007/s11769-018-1007-x
    [3] WANG Shengting, SHENG Yu, LI Jing, WU Jichun, CAO Wei, MA Shuai.  An Estimation of Ground Ice Volumes in Permafrost Layers in North-eastern Qinghai-Tibet Plateau, China . Chinese Geographical Science, 2018, 28(1): 61-73. doi: 10.1007/s11769-018-0932-z
    [4] XU Xiuli, ZHANG Qi, TAN Zhiqiang, LI Yunliang, WANG Xiaolong.  Effects of Water-table Depth and Soil Moisture on Plant Biomass, Diversity, and Distribution at a Seasonally Flooded Wetland of Poyang Lake, China . Chinese Geographical Science, 2015, 25(6): 739-756. doi: 10.1007/s11769-015-0774-x
    [5] Sven Grashey-Jansen, Martin Kuba, Bernd Cyffka, Ümüt Halik, Tayierjiang Aishan.  Spatio-temporal Variability of Soil Water at Three Seasonal Floodplain Sites: A Case Study in Tarim Basin, Northwest China . Chinese Geographical Science, 2014, 0(6): 647-657. doi: 10.1007/s11769-014-0717-y
    [6] WANG Ming, LIU Xingtu, ZHANG Jitao, LI Xiujun, WANG Guodong, LI Xiaoyu, LU Xinrui.  Diurnal and Seasonal Dynamics of Soil Respiration at Temperate Leymus Chinensis Meadow Steppes in Western Songnen Plain, China . Chinese Geographical Science, 2014, 0(3): 287-296. doi: 10.1007/s11769-014-0682-5
    [7] YU Fan, LI Haitao, GU Haiyan, HAN Yanshun.  Assimilating ASAR Data for Estimating Soil Moisture Profile Using an En-semble Kalman Filter . Chinese Geographical Science, 2013, 23(6): 666-679. doi: 10.1007/s11769-013-0623-8
    [8] LI Shanghua, ZHOU Demin, LUAN Zhaoqing, et al..  Quantitative Simulation on Soil Moisture Contents of Two Typical Vegetation Communities in Sanjiang Plain, China . Chinese Geographical Science, 2011, 21(6): 723-733.
    [9] GAO Junqin, OUYANG Hua, LEI Guangchun et al..  Temperature and Soil Moisture Interactively Affect Soil Carbon Mineralization in Zoige Alpine Wetlands . Chinese Geographical Science, 2011, 21(1): 27-35.
    [10] LIU Qian, WANG Mingyu, ZHAO Yingshi.  Assimilation of ASAR Data with a Hydrologic and Semi-empirical Backscattering Coupled Model to Estimate Soil Moisture . Chinese Geographical Science, 2010, 20(3): 218-225. doi: 10.1007/s11769-010-0218-6
    [11] JIN Huijun, SUN Guangyou, YU Shaopeng, JIN Rui, HE Ruixia.  Symbiosis of Marshes and Permafrost in Da and Xiao Hinggan Mountains in Northeastern China . Chinese Geographical Science, 2008, 18(1): 62-69. doi: 10.1007/s11769-008-0062-0
    [12] SONG Dongsheng, ZHAO Kai, GUAN Zhi.  Advances in Research on Soil Moisture by Microwave Remote Sensing in China . Chinese Geographical Science, 2007, 17(2): 186-191. doi: 10.1007/s11769-007-0186-7
    [13] GUAN Zhi, ZHAO Kai, SONG Dong-sheng.  EXPERIMENTAL STUDY ON SOIL MOISTURE USING DUAL-FREQUENCY MICROWAVE RADIOMETER . Chinese Geographical Science, 2006, 16(1): 83-86.
    [14] XIONG Dong-hong, ZHOU Hong-yi, YANG Zhong, ZHANG Xin-bao.  SLOPE LITHOLOGIC PROPERTY, SOIL MOISTURE CONDITION AND REVEGETATION IN DRY-HOT VALLEY OF JINSHA RIVER . Chinese Geographical Science, 2005, 15(2): 186-192.
    [15] CHEN Jie, GONG Zi-tong, CHEN Zhi-cheng, TAN Man-zhi.  CLASSIFICATION OF CRYOSOLS:SIGNIFICANCE, ACHIEVEMENTS AND CHALLENGES . Chinese Geographical Science, 2003, 13(4): 352-358.
    [16] SONG Chang-chun, WANG Yi-yong, WANG Yue-si, YAN Bai-xing WANG De-xuan, ZHAO Zhi-chun, LOU Yan-jing.  CARBON DYNAMICS OF WETLAND IN THE SANJIANG PLAIN . Chinese Geographical Science, 2003, 13(3): 228-231.
    [17] GU Feng-xue, ZHANG Yuan-dong, CHU Yu, SHI Qing-dong, PAN Xiao-ling.  PRIMARY ANALYSIS ON GROUNDWATER, SOIL MOISTURE AND SALINITY IN FUKANG OASIS OF SOUTHERN JUNGGAR BASIN . Chinese Geographical Science, 2002, 12(4): 333-338.
    [18] CHEN Fu, PENG Bu-zhuo.  THE EFFECT OF LAND USE CHANGES ON SOIL CONDITIONS IN ARID REGION . Chinese Geographical Science, 2000, 10(3): 226-230.
    [19] 朱林楠, 吴紫汪, 刘永智, 李东庆.  PERMAFROST DEGENERATION IN THE EAST OF QINGHAI-XIZANG PLATEAU . Chinese Geographical Science, 1996, 6(3): 231-238.
    [20] 杨针娘, 胡鸣高.  STREAMFLOW CHARACTERISTICS OF THE EASTERN QINGHAI-XIZANG PLATEAU . Chinese Geographical Science, 1993, 3(1): 51-60.
  • 加载中
计量
  • 文章访问数:  446
  • HTML全文浏览量:  19
  • PDF下载量:  1211
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-30
  • 修回日期:  2014-01-08
  • 刊出日期:  2015-06-27

Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China

doi: 10.1007/s11769-015-0733-6
    基金项目:  Under the auspices of National Major Scientific Project of China (No. 2013CBA01803), Science Fund for Creative Research Groups of National Natural Science Foundation of China (No. 41121001), National Natural Science Foundation of China (No. 41271081), Foundation of One Hundred Person Project of Chinese Academy of Sciences (No. 51Y251571)
    通讯作者: ZHAO Lin. E-mail: linzhao@lzb.ac.cn

摘要: Hydrothermal processes are key components in permafrost dynamics; these processes are integral to global warming. In this study the coupled heat and mass transfer model for (CoupModel) the soil-plant-atmosphere-system is applied in high-altitude permafrost regions and to model hydrothermal transfer processes in freeze-thaw cycles. Measured meteorological forcing and soil and vegetation properties are used in the CoupModel for the period from January 1, 2009 to December 31, 2012 at the Tanggula observation site in the Qinghai-Tibet Plateau. A 24-h time step is used in the model simulation. The results show that the simulated soil temperature and water content, as well as the frozen depth compare well with the measured data. The coefficient of determination (R2) is 0.97 for the mean soil temperature and 0.73 for the mean soil water content, respectively. The simulated soil heat flux at a depth of 0-20 cm is also consistent with the monitored data. An analysis is performed on the simulated hydrothermal transfer processes from the deep soil layer to the upper one during the freezing and thawing period. At the beginning of the freezing period, the water in the deep soil layer moves upward to the freezing front and releases heat during the freezing process. When the soil layer is completely frozen, there are no vertical water exchanges between the soil layers, and the heat exchange process is controlled by the vertical soil temperature gradient. During the thawing period, the downward heat process becomes more active due to increased incoming shortwave radiation at the ground surface. The melt water is quickly dissolved in the soil, and the soil water movement only changes in the shallow soil layer. Subsequently, the model was used to provide an evaluation of the potential response of the active layer to different scenarios of initial water content and climate warming at the Tanggula site. The results reveal that the soil water content and the organic layer provide protection against active layer deepening in summer, so climate warming will cause the permafrost active layer to become deeper and permafrost degradation.

English Abstract

HU Guojie, ZHAO Lin, LI Ren, WU Tonghua, WU Xiaodong, PANG Qiangqiang, XIAO Yao, QIAO Yongping, SHI Jianzong. Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China[J]. 中国地理科学, 2015, 25(6): 713-727. doi: 10.1007/s11769-015-0733-6
引用本文: HU Guojie, ZHAO Lin, LI Ren, WU Tonghua, WU Xiaodong, PANG Qiangqiang, XIAO Yao, QIAO Yongping, SHI Jianzong. Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China[J]. 中国地理科学, 2015, 25(6): 713-727. doi: 10.1007/s11769-015-0733-6
HU Guojie, ZHAO Lin, LI Ren, WU Tonghua, WU Xiaodong, PANG Qiangqiang, XIAO Yao, QIAO Yongping, SHI Jianzong. Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China[J]. Chinese Geographical Science, 2015, 25(6): 713-727. doi: 10.1007/s11769-015-0733-6
Citation: HU Guojie, ZHAO Lin, LI Ren, WU Tonghua, WU Xiaodong, PANG Qiangqiang, XIAO Yao, QIAO Yongping, SHI Jianzong. Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China[J]. Chinese Geographical Science, 2015, 25(6): 713-727. doi: 10.1007/s11769-015-0733-6
参考文献 (46)

目录

    /

    返回文章
    返回