留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China

LI Taijun LIU Guobin

LI Taijun, LIU Guobin. Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China[J]. 中国地理科学, 2014, (4): 414-422. doi: 10.1007/s11769-014-0704-3
引用本文: LI Taijun, LIU Guobin. Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China[J]. 中国地理科学, 2014, (4): 414-422. doi: 10.1007/s11769-014-0704-3
LI Taijun, LIU Guobin. Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China[J]. Chinese Geographical Science, 2014, (4): 414-422. doi: 10.1007/s11769-014-0704-3
Citation: LI Taijun, LIU Guobin. Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China[J]. Chinese Geographical Science, 2014, (4): 414-422. doi: 10.1007/s11769-014-0704-3

Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China

doi: 10.1007/s11769-014-0704-3
基金项目: Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060300)
详细信息
    通讯作者:

    LIU Guobin

Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China

Funds: Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060300)
More Information
    Corresponding author: LIU Guobin
  • 摘要: The effects of reforestation on carbon (C) sequestration in China's Loess Plateau ecosystem have attracted much research attention in recent years. Black locust trees (Robinia pseudoacacia L.) are valued for their important use in reforestation and water and soil conservation efforts. This forest type is widespread across the Loess Plateau, and must be an essential component of any planning for C sequestration efforts in this fragile ecological region. The long-term effects of stand age on C accumulation and allocation after reforestation remains uncertain. We examined an age-sequence of black locust forest (5, 9, 20, 30, 38, and 56 yr since planting) on the Loess Plateau to evaluate C accumulation and allocation in plants (trees, shrubs, herbages, and leaf litter) and soil (0-100 cm). Allometric equations were developed for estimating the biomass of tree components (leaf, branch, stem without bark, bark and root) with a destructive sampling method. Our results demonstrated that black locust forest ecosystem accumulated C constantly, from 31.42 Mg C/ha (1 Mg = 106 g) at 5 yr to 79.44 Mg C/ha at 38 yr. At the ‘old forest’ stage (38 to 56 yr), the amount of C in plant biomass significantly decreased (from 45.32 to 34.52 Mg C/ha) due to the high mortality of trees. However, old forest was able to accumulate C continuously in soil (from 33.66 to 41.00 Mg C/ha). The C in shrub biomass increased with stand age, while the C stock in the herbage layer and leaf litter was age-independent. Reforestation resulted in C re-allocation in the forest soil. The topsoil (0-20 cm) C stock increased constantly with stand age. However, C storage in sub-top soil, in the 20-30, 30-50, 50-100, and 20-100 cm layers, was age-independent. These results suggest that succession, as a temporal factor, plays a key role in C accumulation and re-allocation in black locust forests and also in regional C dynamics in vegetation.
  • [1] Bashkin M A, Binkley D, 1998. Changes in soil carbon following afforestation in Hawaii. Ecology, 79(3): 828-833. doi:  10.2307/176582
    [2] Berthrong S T, Jobbágy E G, Jackson R B, 2009. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Application, 19(8): 2228-2241. doi:  10.1890/08-1730.1
    [3] Binkley D, Resh S C, 1999. Rapid changes in soils following Eucalyptus afforestation in Hawaii. Soil Science Society of America Journal, 63(1): 222-225. doi: 10.2136/sssaj1999. 03615995006300010032x
    [4] Boring L, Swank W, 1984. The role of black locust (Robinia pseudo-acacia) in forest succession.Journal of Ecology, 72(3): 749-766. doi:  10.2307/2259529
    [5] Cao J, Wang X, Tian Y et al., 2012. Pattern of carbon allocation across three different stages of stand development of a Chinese pine (Pinus tabulaeformis) forest. Ecological Research, 27(5): 883-892. doi:  10.1007/s11284-012-0965-1
    [6] Cao S, Chen L, Liu Z, 2009. An investigation of Chinese attitudes toward the environment: Case study using the Grain for Green Project. AMBIO, 38(1): 55-64. doi: 10.1579/0044-7447- 38.1.55
    [7] Chang R, Fu B, Liu G et al., 2011. Soil carbon sequestration potential for ‘Grain for Green’ project in Loess Plateau, China. Environmental Management, 48(6): 1158-1172. doi:  10.1007/s00267-011-9682-8
    [8] De Simon G, Alberti G, Delle Vedove G et al., 2012. Carbon stocks and net ecosystem production changes with time in two Italian forest chronosequences. European Journal of Forest Research, 131(5): 1297-1311. doi:  10.1007/s10342-012-0599-4
    [9] Fang J Y, Chen A P, Peng C H et al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292(5525): 2320-2322. doi:  10.1126/science.1058629
    [10] Fang S, Xue J, Tang L et al., 2007. Biomass production and carbon sequestration potential in poplar plantations with different management patterns. Journal of Environmental Management, 85(3): 672-679. doi:  10.1126/science.1058629
    [11] Feng X, Fu B, Lu N et al., 2013. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China¢s Loess Plateau.Scientific Reports, 3: 1-5. doi:  10.1038/srep02846
    [12] Fu X, Shao M, Wei X et al., 2010. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma, 155(1-2): 31-35. doi: 10.1016/j. geoderma.2009.11.020
    [13] Giardina C P, Ryan M G et al., 2002. Total belowground carbon allocation in a fast-growing Eucalyptus plantation estimated using a carbon balance approach. Ecosystems, 5(5): 487-499. doi:  10.1007/s10021-002-0130-8
    [14] Gower S, Vogel J, Norman J et al., 1997. Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada. Journal of Geophysical Research, 102(D24): 29029-29029, 29041. doi:  10.1029/97JD02317
    [15] Gower S T, McMurtrie R E, Murty D et al., 1996. Aboveground net primary production decline with stand age: Potential causes. Trends in Ecology and Evolution, 11(9): 378-382. doi:  10.1016/0169-5347(96)10042-2
    [16] Guo L, Gifford R, 2002. Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 8(4): 345-360. doi:  10.1046/j.1354-1013.2002.00486.x
    [17] IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007:The Physical Science Basis, Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
    [18] Johnson D W, Todd D, Tolbert V R et al., 2003. Changes in ecosystem carbon and nitrogen in a loblolly pine plantation over the first 18 years. Soil Science Society of America Journal, 67(5): 1594-1601. doi:  10.2136/sssaj2003.1594
    [19] King J, Giardina C, Pregitzer K et al., 2006. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan. Canadian Journal of Forest Research, 37(1): 93-102. doi:  10.1139/x06-217
    [20] Laganiere J, Angers D A, Pare D et al., 2010. Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Global Change Biology, 16(1): 439-453. doi: 10.1111/j.1365- 2486.2009.01930.x
    [21] Law B, Sun O, Campbell J et al., 2003. Changes in carbon storage and fluxes in a chronosequence of ponderosa pine. Global Change Biology, 9(4): 510-524. doi: 10.1046/j.1365-2486. 2003.00624.x
    [22] Li D, Niu S, Luo Y et al., 2012. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A meta-analysis. New Phytologist, 195(1): 172-181. doi:  10.1111/j.1469-8137.2012.04150.x
    [23] Li X, Son Y M, Lee K H et al., 2013. Biomass and carbon storage in an age-sequence of Japanese red pine (Pinus densiflora) forests in central Korea.Forest Science and Technology, 9(1): 39-44. doi:  10.1080/21580103.2013.773666
    [24] Li X, Yi M J, Son Y et al., 2011. Biomass and Carbon Storage in an Age-Sequence of Korean Pine (Pinus koraiensis) Plantation Forests in Central Korea. Journal of Plant Biology, 54(1): 33-42. doi:  10.1007/s12374-010-9140-9
    [25] Litton C M, Ryan M G., Tinker D B et al., 2003. Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Canadian Journal of Forest Research, 33(2): 351-363. doi:  10.1890/02-5291
    [26] Liu J, Li S, Ouyang Z et al., 2008. Ecological and socioeconomic effects of China¢s policies for ecosystem services. Proceedings of the National Academy of Sciences, 105(28): 9477-9482. doi:  10.1073/pnas.0706436105
    [27] Lü Y, Fu B, Feng X et al., 2012. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. Plos One, 7(2): e31782. doi:  10.1371/journal.pone.0031782
    [28] Montagnini F, Haines B, Boring L et al., 1986. Nitrification potentials in early successional black locust and in mixed hardwood forest stands in the southern Appalachians, USA. Biogeochemistry, 2(2): 197-210. doi:  10.1007/BF02180195
    [29] Nave L, Swanston C, Mishra U et al., 2013. Afforestation effects on soil carbon storage in the United States: A synthesis. Soil Science Society of America Journal, 77(3): 1035-1047. doi:  10.2136/sssaj2012.0236
    [30] Nilsson S, Schopfhauser W, 1995. The carbon-sequestration potential of a global afforestation program. Climatic Change, 30(3): 267-293. doi:  10.1007/BF01091928
    [31] Paul K, Polglase P, Nyakuengama J et al., 2002. Change in soil carbon following afforestation. Forest Ecology and Management, 168(1-3): 241-257. doi:  10.1016/S0378-1127(01)00740-X
    [32] Peichl M, Arain M A, 2006. Above-and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agricultural and Forest Meteorology, 140(1-4): 51-63. doi:  10.1016/j.agrformet.2006.08.004
    [33] Qiu L, Zhang X, Cheng J et al., 2010. Effects of black locust (Robinia pseudoacacia) on soil properties in the loessial gully region of the Loess Plateau, China. Plant and Soil, 332(1-2): 207-217. doi:  10.1007/s11104-010-0286-5
    [34] Smith F W, Resh S C, 1999. Age-related changes in production and below-ground carbon allocation in Pinus contorta forests. Forest Science, 45(3): 333-341.
    [35] Uri V, Varik M, Aosaar J et al., 2012. Biomass production and carbon sequestration in a fertile silver birch (Betula pendula Roth) forest chronosequence. Forest Ecology and Management, 267(1): 117-126. doi:  10.1016/j.foreco.2011.11.033
    [36] Vesterdal L, Ritter E, Gundersen P et al., 2002. Change in soil organic carbon following afforestation of former arable land. Forest Ecology and Management, 169(1-2): 137-147. doi:  10.1016/S0378-1127(02)00304-3
    [37] Wang B, Liu G, Xue S et al., 2012. Effect of black locust (Robinia pseudoacacia) on soil chemical and microbiological properties in the eroded hilly area of China¢ s Loess Plateau. Environment Earth Science, 65(3): 597-607. doi: 10.1007/s12665- 011-1107-8
    [38] Wang Y, Fu B, Lü Y et al., 2011. Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. Catena, 85(1): 58-66. doi:  10.1016/j.catena.2010.12.003
    [39] Xu C Y, Turnbull M H, Tissue D T et al., 2012. Age-related decline of stand biomass accumulation is primarily due to mortality and not to reduction in NPP associated with individual tree physiology, tree growth or stand structure in a Quercus-dominated forest. Journal of Ecology, 100(2): 428-440. doi:  10.1111/j.1365-2745.2011.01933.x
    [40] Zhang H, Guan D S, Song M W et al., 2012. Biomass and carbon storage of Eucalyptus and Acacia plantations in the Pearl River Delta, South China. Forest Ecology and Management, 277(1): 90-97. doi:  10.1016/j.foreco.2012.04.016
    [41] Zhang K., Dang H, Tan S et al., 2010. Change in soil organic carbon following the Grain for Green program in China. Land Degradation and Development, 21(1): 13-23. doi:10.1002/ldr. 954
    [42] Zhao M, Zhou G S, 2005. Estimation of biomass and net primary productivity of major planted forests in China based on forest inventory data. Forest Ecology and Management, 207(3): 295-313. doi:  10.1016/j.foreco.2004.10.049
    [43] Zhou D, Zhao S, Zhu C, 2012. The Grain for Green Project induced land cover change in the Loess Plateau: A case study with Ansai County, Shanxi Province, China. Ecological Indicators, 23: 88-94. doi:  10.1016/j.ecolind.2012.03.021
    [44] Zhou G Y, Liu S G, Li Z et al., 2006. Old-growth forests can accumulate carbon in soils. Science, 314(5804): 1417. doi:10. 1126/science.1130168
    [45] Zhou Z C, Shangguan Z P, 2005. Soil anti-scouribility enhanced by plant roots. Journal of Integrative Plant Biology, 47(6): 676-682. doi:  10.1111/j.1744-7909.2005.00067.x
  • [1] QU Lulu, HUANG Yunxin, YANG Lingfan, LI Yurui.  Vegetation Restoration in Response to Climatic and Anthropogenic Changes in the Loess Plateau, China . Chinese Geographical Science, 2020, 30(1): 89-100. doi: 10.1007/s11769-020-1093-4
    [2] LIU Yuanxin, LYU Yihe, BAI Yingfei, ZHANG Buyun, TONG Xiaolin.  Vegetation Mapping for Regional Ecological Research and Management: A Case of the Loess Plateau in China . Chinese Geographical Science, 2020, 30(3): 410-426. doi: 10.1007/s11769-020-1120-5
    [3] GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan.  Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis . Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
    [4] DONG Suocheng, CHENG Hao, LI Yu, LI Fujia, WANG Zhe, CHEN Feng.  Rural Landscape Types and Recreational Value Spatial Analysis of Valley Area of Loess Plateau: A Case of Hulu Watershed, Gansu Province, China . Chinese Geographical Science, 2017, 27(2): 286-297. doi: 10.1007/s11769-017-0863-0
    [5] WU Qiulan, LIANG Yong, LI Ying, WANG Xizhi, YANG Lei, WANG Xiaotong.  Factors Acquisition and Content Estimation of Farmland Soil Organic Carbon Based upon Internet of Things . Chinese Geographical Science, 2017, 27(3): 431-440. doi: 10.1007/s11769-017-0875-9
    [6] XU Li, WEN Ding, ZHU Jianxing, HE Nianpeng.  Regional Variation in Carbon Sequestration Potential of Forest Ecosystems in China . Chinese Geographical Science, 2017, 27(3): 337-350. doi: 10.1007/s11769-017-0870-1
    [7] QIN Falyu, SHI Xuezheng, XU Shengxiang, YU Dongsheng, WANG Dandan.  Zonal Differences in Correlation Patterns Between Soil Organic Carbon and Climate Factors at Multi-extent . Chinese Geographical Science, 2016, 26(5): 670-678. doi: 10.1007/s11769-015-0736-3
    [8] LIU Yansui, GUO Yanjun, LI Yurui, LI Yuheng.  GIS-based Effect Assessment of Soil Erosion Before and After Gully Land Consolidation: A Case Study of Wangjiagou Project Region, Loess Plateau . Chinese Geographical Science, 2015, 25(2): 137-146. doi: 10.1007/s11769-015-0742-5
    [9] ZHOU Wangming, Bernard Joseph LEWIS, WU Shengnan, YU Dapao, ZHOU Li, WEI Yawei.  Biomass Carbon Storage and Its Sequestration Potential of Afforestation under Natural Forest Protection Program in China . Chinese Geographical Science, 2014, 0(4): 406-413. doi: 10.1007/s11769-014-0702-5
    [10] ZHU Hongchun, TANG Guoan, QIAN Kejian, LIU Haiying.  Extraction and Analysis of Gully Head of Loess Plateau in China Based on Digital Elevation Model . Chinese Geographical Science, 2014, 0(3): 328-338. doi: 10.1007/s11769-014-0663-8
    [11] ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei.  Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China . Chinese Geographical Science, 2014, 0(4): 461-470. doi: 10.1007/s11769-014-0701-6
    [12] FANG Xiangmin, WANG Qingli, ZHOU Wangming, ZHAO Wei, WEI Yawei, NIU Lijun, DAI Limin.  Land Use Effects on Soil Organic Carbon, Microbial Biomass and Microbial Activity in Changbai Mountains of Northeast China . Chinese Geographical Science, 2014, 0(3): 297-306. doi: 10.1007/s11769-014-0670-9
    [13] XIONG Dingpeng, SHI Peili, SUN Yinliang, WU Jianshuang, ZHANG Xianzhou.  Effects of Grazing Exclusion on Plant Productivity and Soil Carbon, Nitrogen Storage in Alpine Meadows in Northern Tibet, China . Chinese Geographical Science, 2014, 0(4): 488-498. doi: 10.1007/s11769-014-0697-y
    [14] HU Chanjuan, LIU Guohua, FU Bojie, CHEN Liding, LYU Yihe, GUO Lei.  Soil Carbon Stock and Flux in Plantation Forest and Grassland Ecosystems in Loess Plateau, China . Chinese Geographical Science, 2014, 0(4): 423-435. doi: 10.1007/s11769-014-0700-7
    [15] LUO Shanghua, MAO Qizheng, MA Keming.  Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China . Chinese Geographical Science, 2014, 0(5): 551-561. doi: 10.1007/s11769-014-0709-y
    [16] LIU Tingxiang, ZHANG Shuwen, TANG Junmei, et al..  Comparison and Analysis of Agricultural and Forest Land Chan¬ges in Typical Agricultural Regions of Northern Mid-latitudes . Chinese Geographical Science, 2013, 23(2): 163-172.
    [17] JIN Tiantian, LIU Guohua, FU Bojie, DING Xiaohui, YANG Lei.  Assessing Adaptability of Planted Trees Using Leaf Traits: A Case Study with Robinia pseudoacacia L. in the Loess Plateau, China . Chinese Geographical Science, 2011, 21(3): 290-303.
    [18] HU Liangjun, YANG Haijun, YANG Qinke, LI Rui.  A GIS-based Modeling Approach for Fast Assessment of Soil Erosion by Water at Regional Scale, Loess Plateau of China . Chinese Geographical Science, 2010, 20(5): 423-433. doi: 10.1007/s11769-010-0416-2
    [19] LIU Xianzhao, LI Jiazhu.  Application of SCS Model in Estimation of Runoff from Small Watershed in Loess Plateau of China . Chinese Geographical Science, 2008, 18(3): 235-241. doi: 10.1007/s11769-008-0235-x
    [20] 朱志诚.  BASIC FEATURES OF FOREST STEPPE IN THE LOESS PLATEAU OF CHINA . Chinese Geographical Science, 1995, 5(2): 170-174.
  • 加载中
计量
  • 文章访问数:  724
  • HTML全文浏览量:  37
  • PDF下载量:  4324
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-15
  • 修回日期:  2014-03-05
  • 刊出日期:  2014-05-27

Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China

doi: 10.1007/s11769-014-0704-3
    基金项目:  Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060300)
    通讯作者: LIU Guobin

摘要: The effects of reforestation on carbon (C) sequestration in China's Loess Plateau ecosystem have attracted much research attention in recent years. Black locust trees (Robinia pseudoacacia L.) are valued for their important use in reforestation and water and soil conservation efforts. This forest type is widespread across the Loess Plateau, and must be an essential component of any planning for C sequestration efforts in this fragile ecological region. The long-term effects of stand age on C accumulation and allocation after reforestation remains uncertain. We examined an age-sequence of black locust forest (5, 9, 20, 30, 38, and 56 yr since planting) on the Loess Plateau to evaluate C accumulation and allocation in plants (trees, shrubs, herbages, and leaf litter) and soil (0-100 cm). Allometric equations were developed for estimating the biomass of tree components (leaf, branch, stem without bark, bark and root) with a destructive sampling method. Our results demonstrated that black locust forest ecosystem accumulated C constantly, from 31.42 Mg C/ha (1 Mg = 106 g) at 5 yr to 79.44 Mg C/ha at 38 yr. At the ‘old forest’ stage (38 to 56 yr), the amount of C in plant biomass significantly decreased (from 45.32 to 34.52 Mg C/ha) due to the high mortality of trees. However, old forest was able to accumulate C continuously in soil (from 33.66 to 41.00 Mg C/ha). The C in shrub biomass increased with stand age, while the C stock in the herbage layer and leaf litter was age-independent. Reforestation resulted in C re-allocation in the forest soil. The topsoil (0-20 cm) C stock increased constantly with stand age. However, C storage in sub-top soil, in the 20-30, 30-50, 50-100, and 20-100 cm layers, was age-independent. These results suggest that succession, as a temporal factor, plays a key role in C accumulation and re-allocation in black locust forests and also in regional C dynamics in vegetation.

English Abstract

LI Taijun, LIU Guobin. Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China[J]. 中国地理科学, 2014, (4): 414-422. doi: 10.1007/s11769-014-0704-3
引用本文: LI Taijun, LIU Guobin. Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China[J]. 中国地理科学, 2014, (4): 414-422. doi: 10.1007/s11769-014-0704-3
LI Taijun, LIU Guobin. Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China[J]. Chinese Geographical Science, 2014, (4): 414-422. doi: 10.1007/s11769-014-0704-3
Citation: LI Taijun, LIU Guobin. Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China[J]. Chinese Geographical Science, 2014, (4): 414-422. doi: 10.1007/s11769-014-0704-3
参考文献 (45)

目录

    /

    返回文章
    返回