留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China

ZENG Xinhua ZHANG Wanjun LIU Xiuping CAO Jiansheng SHEN Huitao ZHAO Xin ZHANG Nannan BAI Yuru Yi Mei

ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei. Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China[J]. 中国地理科学, 2014, (4): 461-470. doi: 10.1007/s11769-014-0701-6
引用本文: ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei. Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China[J]. 中国地理科学, 2014, (4): 461-470. doi: 10.1007/s11769-014-0701-6
ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei. Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China[J]. Chinese Geographical Science, 2014, (4): 461-470. doi: 10.1007/s11769-014-0701-6
Citation: ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei. Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China[J]. Chinese Geographical Science, 2014, (4): 461-470. doi: 10.1007/s11769-014-0701-6

Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China

doi: 10.1007/s11769-014-0701-6
基金项目: Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060600), Knowledge Innovation Programs of Chinese Academy of Sciences (No. KSCX2-EW-J-5), National Key Technology Research and Development Program of China (No. 2011BAD31B02)
详细信息
    通讯作者:

    ZHANG Wanjun

Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China

Funds: Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060600), Knowledge Innovation Programs of Chinese Academy of Sciences (No. KSCX2-EW-J-5), National Key Technology Research and Development Program of China (No. 2011BAD31B02)
More Information
    Corresponding author: ZHANG Wanjun
  • 摘要: Land use change is one of the major factors that affect soil organic carbon (SOC) variation and global carbon balance. However, the effects of land use change on SOC are always variable. In this study, using a series of paired-field experiments, we estimated the effects of revegetation types and environmental conditions on SOC stock and vertical distribution after replacement of cropland with poplar (Populus tomentosa) and korshinsk peashrub (Caragana korshinskii) in three climate regions (Chifeng City, Fengning City and Datong City of the ‘Beijing-Tianjin Sandstorm Source Control’ (BTSSC) program area. The results show that SOC sequestration rate ranges from 0.15 Mg/(ha·yr) to 3.76 Mg/(ha·yr) in the soil layer of 0-100 cm in early stage after cropland afforestation in the BTSSC program area. The SOC accumulation rates are the highest in Fengning for both the two vegetation types. Compared to C. korshinskii, P. tomentosa has greater effects on SOC accumulation in the three climate regions, but significantly greater effect only appears in Datong. The SOC density increases by 20%-111% and 15%-59% for P. tomentosa and 9%-63% and 0-73% for C. korshinskii in the 0-20 cm and 20-100 cm soil layers, respectively. Our results indicate that cropland afforestation not only affects SOC stock in the topsoil, but also has some effects on subsoil carbon. However, the effect of cropland afforestation on SOC accumulation varied with climate regions and revegetation types. Considering the large area of revegetation and relatively high SOC accumulation rate, SOC sequestration in the BTSSC program should contribute significantly to decrease the CO2 concentration in the atmosphere.
  • [1] Amundson R, 2001. The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 29: 535-562. doi:  10.1146/annurev.earth.29.1.535
    [2] Berthrong S T, Jobbagy E, Jackson R B, 2009. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecological Applications, 19(8): 2228-2241. doi:  10.1890/08-1730.1
    [3] Berthrong S T, Pineiro G, Jobbagy E G et al., 2012. Soil C and N with afforestation of grasslands across gradients of precipitation and plantation age. Ecological Applications, 22(1): 76-86. doi:  http://dx.doi.org/10.1890/10-2210.1
    [4] Binkley D, Kaye J, Barry M et al., 2004. First-rotation changes in soil carbon and nitrogen in a Eucalyptus plantation in Hawaii. Soil Science Society of America Journal, 68(5): 1713-1719. doi:  10.2136/sssaj2004.1713
    [5] Canadell J, Jackson R, Ehleringer J et al., 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4): 583-595. doi:  10.1007/BF00329030
    [6] Cerri C E P, Paustian K, Bernoux M et al., 2004. Modeling changes in soil organic matter in Amazon forest to pasture conversion with the Century model. Global Change Biology, 10(5): 815-832. doi:  10.1111/j.1365-2486.2004.00759.x
    [7] Chen L D, Gong J, Fu B J et al., 2007. Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, Loess Plateau of China. Ecological Research, 22(4): 641-648. doi:  10.1007/s11284-006-0065-1
    [8] Deng Guimei, 2007. Comprehensive Benefits Evaluation of Beijing-Tianjin Sand Source Control Projects in Hebei Province. Baoding: Hebei Agriculture University. (in Chinese)
    [9] de Koning G H J, Veldkamp E, López-Ulloa M, 2003. Quantification of carbon sequestration in soils following pasture to forest conversion in northwestern Ecuador. Global Biogeo­chemical Cycles, 17(4): 1098. doi:  10.1029/2003GB002099
    [10] Don A, Schumacher J, Scherer-Lorenzen M et al., 2007. Spatial and vertical variation of soil carbon at two grassland sites—Implications for measuring soil carbon stocks. Geoderma, 141(3-4): 272-282. doi: 10.1016/j.geoderma.2007. 06.003
    [11] Eclesia R P, Jobbagy E G, Jackson R B et al., 2012. Shifts in soil organic carbon for plantation and pasture establishment in native forests and grasslands of South America. Global Change Biology, 18(10): 3237-3251. doi: 10.1111/j.1365-2486.2012. 02761.x
    [12] Franzluebbers A J, Stuedemann J A, 2009. Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the southern Piedmont USA. Agriculture, Ecosystems & Environment, 129(1-3): 28-36. doi: 10.1016/j.agee.2008. 06.013
    [13] Guo L B, Gifford R M, 2002. Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 8(4): 345-360. doi:  10.1046/j.1354-1013.2002.00486.x
    [14] Hiederer R, Kochy M, 2011. Global Soil Organic Carbon Estimates and the Harmonized World Soil Database. Italy: Publication Office of the European Union, 9-73.
    [15] Huntington T G, 1995. Carbon sequestration in an aggrading forest ecosystem in the southeastern USA. Soil Science Society of America Journal, 59(5): 1459-1467. doi: 10.2136/sssaj1995. 03615995005900050036x
    [16] IPCC (Intergovernmental Panel on Climate Change), 2000. Land-use, land-use change, and forestry.In:Watson R Tet al.(eds.). A Special Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1-51.
    [17] Jacinthe P A, Lal R, 2001. A mass balance approach to assess carbon dioxide evolution during erosional events. Land Degradation and Development, 12(4): 329-339. doi:  10.1002/ldr.454.abs
    [18] Jackson R B, Canadell J, Ehleringer J R et al., 1996. A global analysis of root distributions for terrestrial biomes. Oecologia, 108(3): 389-411. doi:  10.1007/BF00333714
    [19] Jobbágy E G, Jackson R B, 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2): 423-436. doi:  10.2307/2641104
    [20] Kirschbaum M U F, Lan B G, Gifford R M, 2008. Why does rainfall affect the trend in soil carbon after converting pastures to forests? A possible explanation based on nitrogen dynamics. Forest Ecology and Management, 255(7): 2990-3000. doi:  10.1016/j.foreco.2008.02.005
    [21] Laganiere J, Angers D A, Pare D, 2010. Carbon accumulation in agricultural soils after afforestation: A meta-analysis.Global Change Biology, 16(1): 439-453. doi: 10.1111/j.1365-2486. 2009.01930.x
    [22] Lal R, 2008. Carbon sequestration. Philosophical Transactions of the Royal Society B-Biological Sciences, 363(1492): 815-830. doi:  10.1098/rstb.2007.2185
    [23] Li X Y, Gao S Y, Xu H Y et al., 2006. Growth of Caragana korshinskii using runoff-collecting microcatchments under semiarid condition. Journal of Hydrology, 328(1-2): 338-346. doi:  10.1016/j.jhydrol.2005.12.002
    [24] Luo Huiqiong, 2008. The Research on Evaluation System of Beijing-Tianjin Sand Storm Source Control Project—Evaluation on Social and Economic Benefits. Beijing: Beijing Forestry University. (in Chinese)
    [25] Morris S J, Bohm S, Haile-Mariam S et al., 2007. Evaluation of carbon accrual in afforested agricultural soils. Global Change Biology, 13(6): 1145-1156. doi: 10.1111/j.1365-2486.2007. 0139.x
    [26] Needelman B A, Wander M M, Bollero G A et al., 1999. Interaction of tillage and soil texture: Biologically active soil organic matter in Illinois. Soil Science Society of America Journal, 63(5): 1326-1334. doi:  10.2136/sssaj1999.6351326x
    [27] Nelson D W, Sommers L E, 1982. Total carbon, organic carbon, and organic matter.In: Page A Let al. (eds.).Methods of Soil Analysis, Part 2,Chemical and Microbial Properties. Madison: America Society of Agronomy and Soil Science Society of America, 539-552.
    [28] Paul K I, Polglase P J, Nyakuengama J G et al., 2002. Change in soil carbon following afforestation. Forest Ecology and Management, 168(1-3): 241-257. doi: 10.1016/so378-1127(01) 00740-x
    [29] Piao S L, Fang J Y, Ciais P et al., 2009. The carbon balance of terrestrial ecosystems in China. Nature, 458(7241): 1009-1013. doi:  10.1038/nature07944
    [30] Pimentel D, Harvey C, Resosudarmo P et al., 1995. Environmental and economic costs of soil erosion and conservation benefits. Science, 267(5201): 1117-1123. doi:  10.1126/science.267.5201.1117
    [31] Rasse D P, Mulder J, Chenu C et al., 2006. Carbon turnover kinetics with depth in a French loamy soil. Soil Science Society of America Journal, 70(6): 2097-2105. doi: 10.2136/sssaj 2006.0056
    [32] Rasse D P, Rumpel C, Dignac M F, 2005. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 269(1-2): 341-356. doi:  10.1007/s11104-004-0907-y
    [33] Song Junshuang, Gao Hongwen, Wang Zang et al., 2005. The phenotype variation of three Caragana species. Acta Prataculturae Sinica, 14(3): 123-130. (in Chinese)
    [34] Wang Chunmei, Wang Runan, Lin Zhaolan, 2010. Carbon sequestration estimation by different tree species and reforestation types in forest ecosystem. Ecology and Environmental Sciences, 19(10): 2501-2505. (in Chinese)
    [35] Wang W J, Qiu L, Zu Y G et al., 2011. Changes in soil organic carbon, nitrogen, pH and bulk density with the development of larch (Larix gmelinii) plantations in China. Global Change Biology, 17(8): 2657-2676. doi:  10.1111/j.1365-2486.2011.02447.x
    [36] Wang Z, Liu G B, Xu M X et al., 2012. Temporal and spatial variations in soil organic carbon sequestration following revegetation in the hilly Loess Plateau, China. Catena, 99: 26-33. doi:  10.1016/j.catena.2012.07.003
    [37] Wei X R, Shao M A, Fu X L et al., 2009. Distribution of soil organic C, N and P in three adjacent land use patterns in the northern Loess Plateau, China. Biogeochemistry, 96(1-3): 149-162. doi:  10.1007/s10533-009-9350-8
    [38] Wei X R, Shao M G, Fu X L et al., 2010. Changes in soil organic carbon and total nitrogen after 28 years grassland afforestation: Effects of tree species, slope position, and soil order. Plant and Soil, 331(1-2): 165-179. doi: 10.1007/s11104-009- 0243-3
    [39] Yan Nan, 2010. The Evaluation Research of Beijing-Tianjin Sandstorm Source Control Project's Ecological Benefits. Beijing: Beijing Forestry University. (in Chinese)
    [40] Young A, 1989. Agroforestry for Soil Conservation. Exeter: BPCC Wheatons Ltd, 81-92.
    [41] Zhang K, Dang H, Tan S et al., 2010. Change in soil organic carbon following the ‘Grain for Green’ programme in China. Land Degradation and Development, 21(1): 13-23. doi:  10.1002/ldr.954
    [42] Zhang T H, Su Y Z, Cui J Y et al., 2006. A leguminous shrub (Caragana microphylla) in semiarid sandy soils of North China. Pedosphere, 16(3): 319-325. doi: 10.1016/s1002- 0160(06)60058-1
  • [1] Xiaoyu LIU, Yongcun ZHAO, Xuezheng SHI, Shihang WANG, Xiang FENG, Fang YAN.  Spatio-temporal Changes and Associated Uncertainties of CENTURY-modelled SOC for Chinese Upland Soils, 1980−2010 . Chinese Geographical Science, 2021, 31(1): 126-136. doi: 10.1007/s11769-021-1179-7
    [2] CHENG Caifeng, LI Min, XUE Zhenshan, ZHANG Zongsheng, LYU Xianguo, JIANG Ming, ZHANG Hongri.  Impacts of Climate and Nutrients on Carbon Sequestration Rate by Wetlands: A Meta-analysis . Chinese Geographical Science, 2020, 30(3): 483-492. doi: 10.1007/s11769-020-1122-3
    [3] HUO Lili, ZOU Yuanchun, LYU Xianguo, ZHANG Zhongsheng, WANG Xuehong, AN Yi.  Effect of Wetland Reclamation on Soil Organic Carbon Stability in Peat Mire Soil Around Xingkai Lake in Northeast China . Chinese Geographical Science, 2018, 28(2): 325-336. doi: 10.1007/s11769-018-0939-5
    [4] GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan.  Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis . Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
    [5] WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang.  Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils . Chinese Geographical Science, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
    [6] Yu Dongsheng, Pan Yue, Zhang Haidong, Wang Xiyang, Ni Yunlong, Zhang Liming, Shi Xue­zheng.  Equality Testing for Soil Grid Unit Resolutions to Polygon Unit Scales with DNDC Modeling of Regional SOC Pools . Chinese Geographical Science, 2017, 27(4): 552-568. doi: 10.1007/s11769-017-0887-5
    [7] WU Qiulan, LIANG Yong, LI Ying, WANG Xizhi, YANG Lei, WANG Xiaotong.  Factors Acquisition and Content Estimation of Farmland Soil Organic Carbon Based upon Internet of Things . Chinese Geographical Science, 2017, 27(3): 431-440. doi: 10.1007/s11769-017-0875-9
    [8] LYU Mingzhi, SHENG Lianxi, ZHANG Zhongsheng, ZHANG Li.  Distribution and Accumulation of Soil Carbon in Temperate Wetland, Northeast China . Chinese Geographical Science, 2016, 26(3): 295-303. doi: 10.1007/s11769-016-0809-y
    [9] QIN Falyu, SHI Xuezheng, XU Shengxiang, YU Dongsheng, WANG Dandan.  Zonal Differences in Correlation Patterns Between Soil Organic Carbon and Climate Factors at Multi-extent . Chinese Geographical Science, 2016, 26(5): 670-678. doi: 10.1007/s11769-015-0736-3
    [10] CHAI Hua, YU Guirui, HE Nianpeng, WEN Ding, LI Jie, FANG Jiangping.  Vertical Distribution of Soil Carbon, Nitrogen, and Phosphorus in Typical Chinese Terrestrial Ecosystems . Chinese Geographical Science, 2015, 25(5): 549-560. doi: 10.1007/s11769-015-0756-z
    [11] LIU Wenhui, ZHU Jiaojun, JIA Quanquan, ZHENG Xiao, LI Junsheng, LOU Xuedong, HU Lile.  Carbon Sequestration Effects of Shrublands in Three-North Shelterbelt Forest Region, China . Chinese Geographical Science, 2014, 0(4): 444-453. doi: 10.1007/s11769-014-0698-x
    [12] FANG Xiangmin, WANG Qingli, ZHOU Wangming, ZHAO Wei, WEI Yawei, NIU Lijun, DAI Limin.  Land Use Effects on Soil Organic Carbon, Microbial Biomass and Microbial Activity in Changbai Mountains of Northeast China . Chinese Geographical Science, 2014, 0(3): 297-306. doi: 10.1007/s11769-014-0670-9
    [13] LI Taijun, LIU Guobin.  Age-related Changes of Carbon Accumulation and Allocation in Plants and Soil of Black Locust Forest on Loess Plateau in Ansai County, Shaanxi Province of China . Chinese Geographical Science, 2014, 0(4): 414-422. doi: 10.1007/s11769-014-0704-3
    [14] XIONG Dingpeng, SHI Peili, SUN Yinliang, WU Jianshuang, ZHANG Xianzhou.  Effects of Grazing Exclusion on Plant Productivity and Soil Carbon, Nitrogen Storage in Alpine Meadows in Northern Tibet, China . Chinese Geographical Science, 2014, 0(4): 488-498. doi: 10.1007/s11769-014-0697-y
    [15] ZHOU Wangming, Bernard Joseph LEWIS, WU Shengnan, YU Dapao, ZHOU Li, WEI Yawei.  Biomass Carbon Storage and Its Sequestration Potential of Afforestation under Natural Forest Protection Program in China . Chinese Geographical Science, 2014, 0(4): 406-413. doi: 10.1007/s11769-014-0702-5
    [16] LUO Shanghua, MAO Qizheng, MA Keming.  Comparison on Soil Carbon Stocks Between Urban and Suburban Topsoil in Beijing, China . Chinese Geographical Science, 2014, 0(5): 551-561. doi: 10.1007/s11769-014-0709-y
    [17] WU Lezhi, CAI Zucong.  Key Variables Explaining Soil Organic Carbon Content Variations in Croplands and Non-Croplands in Chinese Provinces . Chinese Geographical Science, 2012, 22(3): 255-263.
    [18] XIAO Yu, AN Kai, XIE Gaodi, LU Chunxia, ZHANG Biao.  Carbon Sequestration in Forest Vegetation of Beijing at Sublot Level . Chinese Geographical Science, 2011, 21(3): 279-289.
    [19] XU Xinliang, LI Kerang.  Biomass Carbon Sequestration by Planted Forests in China . Chinese Geographical Science, 2010, 20(4): 289-297. doi: 10.1007/s11769-010-0401-9
    [20] CHENG Shu-lan, OUYANG Hua, NIU Hai-shan, WANG Lin, ZHANG Feng, GAO Jun-qin, TIAN Yu-qiang.  SPATIAL AND TEMPORAL DYNAMICS OF SOIL ORGANIC CARBON IN RESERVED DESERTIFICATION AREA——A Case Study in Yulin City, Shaanxi Province, China . Chinese Geographical Science, 2004, 14(3): 245-250.
  • 加载中
计量
  • 文章访问数:  388
  • HTML全文浏览量:  27
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-16
  • 修回日期:  2014-02-21
  • 刊出日期:  2014-05-27

Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China

doi: 10.1007/s11769-014-0701-6
    基金项目:  Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060600), Knowledge Innovation Programs of Chinese Academy of Sciences (No. KSCX2-EW-J-5), National Key Technology Research and Development Program of China (No. 2011BAD31B02)
    通讯作者: ZHANG Wanjun

摘要: Land use change is one of the major factors that affect soil organic carbon (SOC) variation and global carbon balance. However, the effects of land use change on SOC are always variable. In this study, using a series of paired-field experiments, we estimated the effects of revegetation types and environmental conditions on SOC stock and vertical distribution after replacement of cropland with poplar (Populus tomentosa) and korshinsk peashrub (Caragana korshinskii) in three climate regions (Chifeng City, Fengning City and Datong City of the ‘Beijing-Tianjin Sandstorm Source Control’ (BTSSC) program area. The results show that SOC sequestration rate ranges from 0.15 Mg/(ha·yr) to 3.76 Mg/(ha·yr) in the soil layer of 0-100 cm in early stage after cropland afforestation in the BTSSC program area. The SOC accumulation rates are the highest in Fengning for both the two vegetation types. Compared to C. korshinskii, P. tomentosa has greater effects on SOC accumulation in the three climate regions, but significantly greater effect only appears in Datong. The SOC density increases by 20%-111% and 15%-59% for P. tomentosa and 9%-63% and 0-73% for C. korshinskii in the 0-20 cm and 20-100 cm soil layers, respectively. Our results indicate that cropland afforestation not only affects SOC stock in the topsoil, but also has some effects on subsoil carbon. However, the effect of cropland afforestation on SOC accumulation varied with climate regions and revegetation types. Considering the large area of revegetation and relatively high SOC accumulation rate, SOC sequestration in the BTSSC program should contribute significantly to decrease the CO2 concentration in the atmosphere.

English Abstract

ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei. Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China[J]. 中国地理科学, 2014, (4): 461-470. doi: 10.1007/s11769-014-0701-6
引用本文: ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei. Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China[J]. 中国地理科学, 2014, (4): 461-470. doi: 10.1007/s11769-014-0701-6
ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei. Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China[J]. Chinese Geographical Science, 2014, (4): 461-470. doi: 10.1007/s11769-014-0701-6
Citation: ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei. Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China[J]. Chinese Geographical Science, 2014, (4): 461-470. doi: 10.1007/s11769-014-0701-6
参考文献 (42)

目录

    /

    返回文章
    返回