留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China

SHEN Huitao ZHANG Wanjun YANG Xue LIU Xiuping CAO Jiansheng ZENG Xinhua ZHAO Xin CHEN Xuexun ZHANG Wenxi

SHEN Huitao, ZHANG Wanjun, YANG Xue, LIU Xiuping, CAO Jiansheng, ZENG Xinhua, ZHAO Xin, CHEN Xuexun, ZHANG Wenxi. Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China[J]. 中国地理科学, 2014, (4): 454-460. doi: 10.1007/s11769-014-0699-9
引用本文: SHEN Huitao, ZHANG Wanjun, YANG Xue, LIU Xiuping, CAO Jiansheng, ZENG Xinhua, ZHAO Xin, CHEN Xuexun, ZHANG Wenxi. Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China[J]. 中国地理科学, 2014, (4): 454-460. doi: 10.1007/s11769-014-0699-9
SHEN Huitao, ZHANG Wanjun, YANG Xue, LIU Xiuping, CAO Jiansheng, ZENG Xinhua, ZHAO Xin, CHEN Xuexun, ZHANG Wenxi. Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China[J]. Chinese Geographical Science, 2014, (4): 454-460. doi: 10.1007/s11769-014-0699-9
Citation: SHEN Huitao, ZHANG Wanjun, YANG Xue, LIU Xiuping, CAO Jiansheng, ZENG Xinhua, ZHAO Xin, CHEN Xuexun, ZHANG Wenxi. Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China[J]. Chinese Geographical Science, 2014, (4): 454-460. doi: 10.1007/s11769-014-0699-9

Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China

doi: 10.1007/s11769-014-0699-9
基金项目: Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060600), Knowledge Innovation Programs of Chinese Academy of Science (No. KSCX2-EW-J-5)
详细信息
    通讯作者:

    ZHANG Wanjun

Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China

Funds: Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060600), Knowledge Innovation Programs of Chinese Academy of Science (No. KSCX2-EW-J-5)
More Information
    Corresponding author: ZHANG Wanjun
  • 摘要: Afforestation and reforestation are effective and ecological ways of mitigating elevated atmospheric carbon dioxide (CO2) concentration and increasing carbon (C) storage in terrestrial ecosystems. In this study, we measured the above-ground (tree, herbaceous plants and litter) and below-ground (root and soil) C storage in an aspen plantation(Populus davidiana)monoculture (PD), a larch plantation (Larix pincipis-rupprechtii) monoculture (LP), a pine plantation (Pinus tabulaeformis) monoculture (PT), a larch and birch mixed plantation (L. pincipis-rupprechtii and Betula platyphlla mixed) (MLB), and an apricot plantation (Armeniaca sibirica) monoculture (AS) under the Desertification Combating Program in Hebei Province, the northern China. The objective was to assess the effect of afforestation species on ecosystem C pools of different plantation types. Results showed that C storage of LP stand (258.0 Mg/ha) and MLB (163.4 Mg/ha) were significantly higher than the C storage in PD (45.5 Mg/ha), PT (58.9 Mg/ha) and AS (49.4 Mg/ha), respectively. Soil C was the main carbon pool of the ecosystem C storage in the five plantation stands, ranging from 31.4 Mg/ha to 232.5 Mg/ha, which accounted for 69.0%-90.1% of the total ecosystem C storage. The C storage in tree layer was about 5.2%-23.2% of ecosystem C storage. The herbaceous plants and litter layers contained 1.0%-6.0% and 1.5%-3.3% of ecosystem C storage, respectively. Our results suggest that tree species should be incorporated to accurately develop regional C budget of afforestation program, and also imply that substantial differences in ecosystem C stocks among plantation types can facilitate decision making on C management.
  • [1] Chen X G, Zhang X Q, Zhang Y P et al., 2009. Carbon sequestration potential of the stands under the Grain for Green Program in Yunnan Province, China. Forest Ecology and Management, 258(3): 199-206. doi:  10.1016/j.foreco.2008.07.010
    [2] Devi B, Bhardwaj D R, Panwar P et al., 2013. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India. Annals of Forest Research, 56(1): 123-135.
    [3] Gao Shangyu, Zhang Chunlai, Zou Xueyong et al., 2008. Benefits of Beijing-Tianjin Sand Source Control Engineering. Beijing: Science Press, 14. (in Chinese)
    [4] Guo L B, Cowie A L, Montagu K D et al., 2008. Carbon and nitrogen stocks in a native pasture and an adjacent 16-year-old Pinus radiate D. Don. plantation in Australia. Agriculture,Ecosystems and Environment, 124(3-4): 205-218. doi:  10.1016/j.agee.2007.09.013
    [5] Han F P, Hu W, Zheng J Y et al., 2010. Estimating soil organic carbon storage and distribution in a catchment of Loess Plateau, China. Geoderma,154(3-4): 261-266. doi: 10.1016/j.geoderma.2009.10. 011
    [6] He Y J, Qin L, Li Z Y et al., 2013. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. Forest Ecology and Management, 295(5): 193-198. doi:  10.1016/j.foreco.2013.01.020
    [7] Hu Y L, Zeng D H, Fan Z P et al., 2008 Changes in ecosystem carbon stocks following grassland afforestation of semiarid sandy soil in the southeastern Keerqin Sandy Lands, China. Journal of Arid Environments, 72(12): 2193-2200. doi:  10.1016/j.jaridenv.2008.07.007
    [8] Huang Jinxue, Huang Limei, Lin Zhichao et al., 2010. Controlling factors of litter decomposition rate in China's forets. Journal of Subtropical Resources and Environment, 5(3): 56-63. (in Chinese)
    [9] Huang L, Liu J Y, Shao Q Q et al., 2012. Carbon sequestration by forestation across China: Past, present, and future. Renewable and Sustainable Energy Reviews, 16(2): 1291-1299. doi:  10.1016/j.rser.2011.10.004
    [10] IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007:The Physical Science Basis. Cambridge: Cambridge University Press.
    [11] Jandl R, Lindner M, Vesterdal L et al., 2007. How strongly can forest management influence soil carbon sequestration? Forest Ecology and Management, 137(3-4): 253-268. doi: 10.1016/j.geoderma. 2006.09.003
    [12] Li X F, Han S J, 2008. Preservation of broadleaf species in Korean pine (Pinus koraiensis) plantations affects soil properties, carbon storage, biomass allocation, and available nitrogen storage. Canadian Journal of Forest Research, 38(8): 2227- 2235. doi:  10.1139/X08-052
    [13] Li Xiaohan, Wang Chaohui, 2009. Comparison of two soil organic carbon determination methods. Analytical Instrumentation, 40(5): 78-80. (in Chinese)
    [14] Liu C, Lu J Z, Yin R S, 2010. An estimation of the effects of China's Priority Forestry Programs on farmers' income. Environmental Management, 45(3): 526-540. doi:  10.1007/s00267-010-9433-2
    [15] Mo Jiangming, Brown Sandra, Peng Shaoling et al., 2002. Role of understory plants on nutrient cycling of a restoring degraded Pine forest in a MAB Reserve of Subtropical China. Acta Ecologica Sinica, 22(9): 1407-1413. (in Chinese)
    [16] Paul K I, Polglase P J, Nyakuengama J G et al., 2002. Change in soil carbon following afforestation.Forest Ecology and Management, 168(1-3): 241-257. doi:  S0378-1127(01)00740-X
    [17] Peichl M, Arain M A, 2006. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Forest Ecology and Management, 140(1-4): 51-63. doi:  10.1016/j.agrformet.2006.08.004
    [18] Pérez-Cruzado C, Mansilla-Salinero P, Rodríguez-Soalleiro R et al., 2012. Influence of tree species on carbon sequestration in afforested pastures in a humid temperate region. Plant and Soil, 353(1-2): 333-353. doi:  10.1007/s11104-011-1035-0
    [19] Schulp C J E, Nabuurs G J, Verburg P H et al., 2008. Effect of tree species on carbon stocks in forest floor and mineral soil and implications for soil carbon inventories. Forest Ecology and Management, 256(3): 482-490. doi: 10.1016/j.foreco. 2008.05.007
    [20] Schumacher B A, 2002. Methods for the Determination of Total Organic Carbon(TOC)in Soils and Sediments. Las Vegas: United States Environmental Protection Agency, Environmental Sciences Division National Exposure Research Laboratory.
    [21] Shi J, Cui L L, 2010. Soil carbon change and its affecting factors following afforestation in China. Landscape and Urban Planning, 98(2): 75-85. doi:  10.1016/j.landurbplan.2010.07.011
    [22] Somogyi Z, Cienciala E, Mäkipää R et al., 2007. Indirect methods of large-scale forest biomass estimation. European Journal of Forest Research, 126(2): 197-207. doi:  10.1007/s10342-006-0125-7
    [23] Toriyama J, Kato T, Siregar C A et al., 2011. Comparison of depth- and mass-based approaches for estimating changes in forest soil carbon stocks: A case study in young plantations and secondary forests in West Java, Indonesia. Forest Ecology and Management, 262(9): 1659-1667. doi: 10.1016/j.foreco. 2011.07.027
    [24] Verma A, Tewari A, Shah S, 2012. Carbon storage capacity of high altitude Quercus semecarpifoilia, forests of Central Himalayan region. Scandinavian Journal of Forest Research,27(7): 609-618. doi:  10.1080/02827581.2012.689003
    [25] Wang B, Wei W J, Xing Z K et al., 2012. Biomass carbon pools of Cunninghamia lanceolate (Lamb.) Hook. Forests in subtropical China: Characteristics and potential. Scandinavian Journal of Forest Research, 27(6): 545-560. doi:  10.1080/02827581.2012.672585
    [26] Wang C K, 2006. Biomass allometric equations for 10 co-occuring tree species in Chinese temperate forests. Forest Ecology and Management, 222(1-3): 9-16. doi: 10.1016/j. foreco.2005.10.074
    [27] Wang C M, Ouyang H, Shao B et al., 2006. Soil carbon changes following afforestation with Olga Bay Larch (Larix olgensis Henry) in northeastern China. Journal of Integrative Plant Biology, 48(5): 503-512. doi:  10.1111/j.1744-7909.2006.00264.x
    [28] Wang Q K, Wang S L, Huang Y, 2008. Comparisons of litterfall, litter decomposition and nutrient return in a monoculture Cunninghamia lanceolata and a mixed stand in southern China. Forest Ecology and Management, 255(3-4): 1210-1218. doi:  10.1016/j.foreco.2007.10.026
    [29] Wang Q K, Wang S L, Zhang J W, 2009. Assessing the effects of vegetation types on carbon storage fifteen years after reforestation on a Chinese fir site. Forest Ecology and Management, 258(7): 1437-1441. doi:  10.1016/j.foreco.2009.06.050
    [30] Zhang Q Z, Wang C K, 2010. Carbon density and distribution of six Chinese temperate forests. Science China(Life Sciences), 53(7): 831-840. doi:  10.1007/s11427-010-4026-0
    [31] Zheng H, Ouyang Z Y, Xu W H et al., 2008. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecology and Management, 255(3-4): 1113-1121. doi:  10.1016/j.foreco.2007.10.015
    [32] Zhou Lei, Wang Shaoqiang, Kindermann Georg et al., 2013. Carbon dynamics in woody biomass of forest ecosystem in China with forest management practices under future climate change and rising CO2concentration. Chinese Geographical Science, 23(5): 519-536. doi:  10.1007/s11769-013-0622-9
    [33] Zhou Yurong, Yu Zhenliang, Zhao Shidong, 2000. Carbon storage and budget of major Chinese forest types. Acta Phytoecologica Sinica, 24(5): 518-522. (in Chinese)
  • [1] Wei LIU, Dianfeng LIU, Yang LIU.  Spatially Heterogeneous Response of Carbon Storage to Land Use Changes in Pearl River Delta Urban Agglomeration, China . Chinese Geographical Science, 2023, 33(2): 271-286. doi: 10.1007/s11769-023-1343-3
    [2] Zhi WANG, Lihua XU, Yijun SHI, Qiwei MA, Yaqi WU, Zhangwei LU, Liwei MAO, Enqi PANG, Qi ZHANG.  Impact of Land Use Change on Vegetation Carbon Storage During Rapid Urbanization: A Case Study of Hangzhou, China . Chinese Geographical Science, 2021, 31(2): 209-222. doi: 10.1007/s11769-021-1183-y
    [3] Jiuge FENG, Jinfeng LIANG, Qianwei LI, Xiaoya ZHANG, Yi YUE, Junqin GAO.  Effect of Hydrological Connectivity on Soil Carbon Storage in the Yellow River Delta Wetlands of China . Chinese Geographical Science, 2021, 31(2): 197-208. doi: 10.1007/s11769-021-1185-9
    [4] HE Qingsong, TAN Shukui, XIE Peng, LIU Yaolin, LI Jing.  Re-assessing Vegetation Carbon Storage and Emissions from Land Use Change in China Using Surface Area . Chinese Geographical Science, 2019, 20(4): 601-613. doi: 10.1007/s11769-019-1058-7
    [5] WU Qiulan, LIANG Yong, LI Ying, WANG Xizhi, YANG Lei, WANG Xiaotong.  Factors Acquisition and Content Estimation of Farmland Soil Organic Carbon Based upon Internet of Things . Chinese Geographical Science, 2017, 27(3): 431-440. doi: 10.1007/s11769-017-0875-9
    [6] ZHANG Dan, ZHENG Haifeng, REN Zhibin, ZHAI Chang, SHEN Guoqiang, MAO Zhixia, WANG Peijiang, HE Xingyuan.  Effects of Forest Type and Urbanization on Carbon Storage of Urban Forests in Changchun, Northeast China . Chinese Geographical Science, 2015, 25(2): 147-158. doi: 10.1007/s11769-015-0743-4
    [7] LIU Guohua, WU Xing.  Carbon Storage and Sequestration of National Key Ecological Restora-tion Programs in China: An Introduction to Special Issue . Chinese Geographical Science, 2014, 0(4): 393-396. doi: 10.1007/s11769-014-0695-0
    [8] XIONG Dingpeng, SHI Peili, SUN Yinliang, WU Jianshuang, ZHANG Xianzhou.  Effects of Grazing Exclusion on Plant Productivity and Soil Carbon, Nitrogen Storage in Alpine Meadows in Northern Tibet, China . Chinese Geographical Science, 2014, 0(4): 488-498. doi: 10.1007/s11769-014-0697-y
    [9] WU Xing, LI Zongshan, FU Bojie, LU Fei, WANG Dongbo, LIU Huifeng, LIU Guohua.  Effects of Grazing Exclusion on Soil Carbon and Nitrogen Storage in Semi-arid Grassland in Inner Mongolia, China . Chinese Geographical Science, 2014, 0(4): 479-487. doi: 10.1007/s11769-014-0694-1
    [10] ZENG Xinhua, ZHANG Wanjun, LIU Xiuping, CAO Jiansheng, SHEN Huitao, ZHAO Xin, ZHANG Nannan, BAI Yuru, Yi Mei.  Change of Soil Organic Carbon after Cropland Afforestation in ‘Beijing- Tianjin Sandstorm Source Control’ Program Area in China . Chinese Geographical Science, 2014, 0(4): 461-470. doi: 10.1007/s11769-014-0701-6
    [11] WEI Yawei, YU Dapao, Bernard Joseph LEWIS, ZHOU Li, ZHOU Wangming, FANG Xiangmin, ZHAO Wei, WU Shengnan, DAI Limin.  Forest Carbon Storage and Tree Carbon Pool Dynamics under Natural Forest Protection Program in Northeastern China . Chinese Geographical Science, 2014, 0(4): 397-405. doi: 10.1007/s11769-014-0703-4
    [12] LIU Wenhui, ZHU Jiaojun, JIA Quanquan, ZHENG Xiao, LI Junsheng, LOU Xuedong, HU Lile.  Carbon Sequestration Effects of Shrublands in Three-North Shelterbelt Forest Region, China . Chinese Geographical Science, 2014, 0(4): 444-453. doi: 10.1007/s11769-014-0698-x
    [13] ZHOU Wangming, Bernard Joseph LEWIS, WU Shengnan, YU Dapao, ZHOU Li, WEI Yawei.  Biomass Carbon Storage and Its Sequestration Potential of Afforestation under Natural Forest Protection Program in China . Chinese Geographical Science, 2014, 0(4): 406-413. doi: 10.1007/s11769-014-0702-5
    [14] LIU Yong, WANG Cheng, YUE Wenze, HU Yanyan.  Storage and Density of Soil Organic Carbon in Urban Topsoil of Hilly Cities: A Case Study of Chongqing Municipality of China . Chinese Geographical Science, 2013, 23(1): 26-34.
    [15] WU Dan, SHAO Quanqin, LI Jia.  Effects of Afforestation on Carbon Storage in Boyang Lake Basin, China . Chinese Geographical Science, 2013, 23(6): 647-654. doi: 10.1007/s11769-013-0618-5
    [16] GONG Yanming, HU Yukun, FANG Fei, et al..  Carbon Storage and Vertical Distribution in Three Shrubland Communities in Gurbantünggüt Desert, Uygur Autonomous Region of Xinjiang, Northwest China . Chinese Geographical Science, 2012, 22(5): 541-549.
    [17] WU Lezhi, CAI Zucong.  Key Variables Explaining Soil Organic Carbon Content Variations in Croplands and Non-Croplands in Chinese Provinces . Chinese Geographical Science, 2012, 22(3): 255-263.
    [18] LIU Zigang1, WANG Ming2, 3, MA Xuehui2.  Estimation of Storage and Density of Organic Carbon in Peatlands of China . Chinese Geographical Science, 2012, 22(6): 637-646.
    [19] LIANG Yu, HE Hong S, LEWIS Bernard L.  Responses of Tree Species to Climate Warming at Different Spatial Scales . Chinese Geographical Science, 2011, 21(4): 427-436.
    [20] XU Xinliang, LI Kerang.  Biomass Carbon Sequestration by Planted Forests in China . Chinese Geographical Science, 2010, 20(4): 289-297. doi: 10.1007/s11769-010-0401-9
  • 加载中
计量
  • 文章访问数:  394
  • HTML全文浏览量:  17
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-16
  • 修回日期:  2014-01-21
  • 刊出日期:  2014-05-27

Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China

doi: 10.1007/s11769-014-0699-9
    基金项目:  Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA05060600), Knowledge Innovation Programs of Chinese Academy of Science (No. KSCX2-EW-J-5)
    通讯作者: ZHANG Wanjun

摘要: Afforestation and reforestation are effective and ecological ways of mitigating elevated atmospheric carbon dioxide (CO2) concentration and increasing carbon (C) storage in terrestrial ecosystems. In this study, we measured the above-ground (tree, herbaceous plants and litter) and below-ground (root and soil) C storage in an aspen plantation(Populus davidiana)monoculture (PD), a larch plantation (Larix pincipis-rupprechtii) monoculture (LP), a pine plantation (Pinus tabulaeformis) monoculture (PT), a larch and birch mixed plantation (L. pincipis-rupprechtii and Betula platyphlla mixed) (MLB), and an apricot plantation (Armeniaca sibirica) monoculture (AS) under the Desertification Combating Program in Hebei Province, the northern China. The objective was to assess the effect of afforestation species on ecosystem C pools of different plantation types. Results showed that C storage of LP stand (258.0 Mg/ha) and MLB (163.4 Mg/ha) were significantly higher than the C storage in PD (45.5 Mg/ha), PT (58.9 Mg/ha) and AS (49.4 Mg/ha), respectively. Soil C was the main carbon pool of the ecosystem C storage in the five plantation stands, ranging from 31.4 Mg/ha to 232.5 Mg/ha, which accounted for 69.0%-90.1% of the total ecosystem C storage. The C storage in tree layer was about 5.2%-23.2% of ecosystem C storage. The herbaceous plants and litter layers contained 1.0%-6.0% and 1.5%-3.3% of ecosystem C storage, respectively. Our results suggest that tree species should be incorporated to accurately develop regional C budget of afforestation program, and also imply that substantial differences in ecosystem C stocks among plantation types can facilitate decision making on C management.

English Abstract

SHEN Huitao, ZHANG Wanjun, YANG Xue, LIU Xiuping, CAO Jiansheng, ZENG Xinhua, ZHAO Xin, CHEN Xuexun, ZHANG Wenxi. Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China[J]. 中国地理科学, 2014, (4): 454-460. doi: 10.1007/s11769-014-0699-9
引用本文: SHEN Huitao, ZHANG Wanjun, YANG Xue, LIU Xiuping, CAO Jiansheng, ZENG Xinhua, ZHAO Xin, CHEN Xuexun, ZHANG Wenxi. Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China[J]. 中国地理科学, 2014, (4): 454-460. doi: 10.1007/s11769-014-0699-9
SHEN Huitao, ZHANG Wanjun, YANG Xue, LIU Xiuping, CAO Jiansheng, ZENG Xinhua, ZHAO Xin, CHEN Xuexun, ZHANG Wenxi. Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China[J]. Chinese Geographical Science, 2014, (4): 454-460. doi: 10.1007/s11769-014-0699-9
Citation: SHEN Huitao, ZHANG Wanjun, YANG Xue, LIU Xiuping, CAO Jiansheng, ZENG Xinhua, ZHAO Xin, CHEN Xuexun, ZHANG Wenxi. Carbon Storage Capacity of Different Plantation Types Under Sands­torm Source Control Program in Hebei Province, China[J]. Chinese Geographical Science, 2014, (4): 454-460. doi: 10.1007/s11769-014-0699-9
参考文献 (33)

目录

    /

    返回文章
    返回