留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation

SHAO Jing'an LI Yangbing WEI Chaofu XIE Deti

SHAO Jing'an, LI Yangbing, WEI Chaofu, XIE Deti. Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation[J]. 中国地理科学, 2009, 19(3): 241-248. doi: 10.1007/s11769-009-0241-7
引用本文: SHAO Jing'an, LI Yangbing, WEI Chaofu, XIE Deti. Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation[J]. 中国地理科学, 2009, 19(3): 241-248. doi: 10.1007/s11769-009-0241-7
SHAO Jing'an, LI Yangbing, WEI Chaofu, XIE Deti. Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation[J]. Chinese Geographical Science, 2009, 19(3): 241-248. doi: 10.1007/s11769-009-0241-7
Citation: SHAO Jing'an, LI Yangbing, WEI Chaofu, XIE Deti. Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation[J]. Chinese Geographical Science, 2009, 19(3): 241-248. doi: 10.1007/s11769-009-0241-7

Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation

doi: 10.1007/s11769-009-0241-7
基金项目: Under the auspices of Key Project of National Natural Science Foundation of China (No.40231016)
详细信息
    通讯作者:

    WEI Chaofu.E-mail:weicf@swu.edu.cn

Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation

Funds: Under the auspices of Key Project of National Natural Science Foundation of China (No.40231016)
  • 摘要: A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.
  • [1] Bayer C,Martin-Neto L,Mielniczuk J et al.,2001.Changes in soil organic matter fractions unader subtropical no-till cropping systems.Soil Sci.Soc.Am.J.,65:1473-1478.
    [2] Blair G J,Lefroy R D B,Lisle L,1995.Soil C fractions based on their degree of oxidation and the development of a C management index for agricultural system.Aust.J.Agric.Resour.,46(7):1459-1466.
    [3] Chan K Y,Heenan D P,Oates A,2002.Soil carbon fractions and relationship to soil quality under different tillage and stubble management.Soil Till.Res.,63(3-4):133-139.DOI:10.1016/S0167-1987(01)00239-2
    [4] Ciavatta C,Govi M,Antisari Vittori L et al.,1991.Determination of organic carbon in aqueous extract of soil and fertilizers.Commun.Soil Sci.Plant Anal,22:795-807.
    [5] Franzluebbers A J,Stuedemann J A,2002.Particulate and non-particulate fractions of soil organic carbon under pastures in the Southern Piedmont USA.Environmental Pollution,116(supp.1):S53-S62.DOI:10.1016/S0269-7491(01)00247-0
    [6] Freixo A A,Machado P L,Santos H P,2002.Soil organic carbon and fractions of a Rhodic Ferralsol under the influence of tillage and crop rotation systems in southern Brazil.Soil Till.Res.,64(3-4):221-230.DOI:10.1016/S0167-1987(01)00262-8
    [7] Haynes R J,2005.Labile organic matter fractions as central components of the quality of agricultural soils:An overview.Advances in Agronomy,85:221-268.
    [8] Hu S,Coleman D C,Carroll C R et al.,1997.Labile soil carbon pools in subtropical forest and agricultural ecosystems as influenced by management practices and vegetation types.Agric.Ecosyst.Environ.,65(1):69-78.DOI:10.1016/S0167-8809(97) 00049-2
    [9] Huang Xuexia,2005.Change of organic carbon in the purple paddy soil and its impact on carbon sequestration under tillage management practices.Chongqing:Southwest Agricultural University.(in Chinese)
    [10] Huang X X,Gao M,Wei C F et al.,2006.Tillage effect on organic carbon in a purple paddy soil.Pedosphere,16(5):660-667.DOI:10.1016/S1002-0160(06)60100-8
    [11] Jacinthe P-A,Lal R,Owens L B et al.,2004.Transport of labile carbon in runoff as affected by land use and rainfall characteristics.Soil Till.Res.,77(2):111-123.DOI:10.1016/j.still.2003.11.004
    [12] Li Z B,Shuman L M,1997.Estimation of retardation factor of dissolved organic carbon in sandy soils using batch experiments.Geoderma,78(3-4):197-206.DOI:10.1016/S00167061 (97)00048-7
    [13] Li Zhongpei,Zhang Taolin,Chert Biyun,2004.Dynamics of soluble organic carbon and relation to mineralization of soil organic carbon.Acta Pedologica Sinica,41(4):544-552.(in Chinese)
    [14] Liu Shoulong,Xiao He'ai,Tong Chengli et al.,2003.Microbial iomass C,N and P and their responses to application of inorganic and organic fertilizers in subtropical paddy soils.Research of Agricultural Modernization,24(4):278-283.(in Chinese)
    [15] Liu Shuxia,Liu Jingshuang,Zhao Mingdong et al.,2003.Relationship between active SOC,nutrient bioavailability and crop yield.Journal of Jilin Agricultural University,25(5):539-543.(in Chinese)
    [16] Lundquist E J,Jackson L E,Scow K M,1999.Wet-dry cycles affect dissolved organic carbon in two California agricultural soils.Soil Biol.Biochem.,31(7):1031-1038.DOI:10.1016/S0038-0717(99)00017-6
    [17] Ni Jinzhi,Xu Jianmin,Xie Zhengmiao,2001.The size and characterization of biologically active organic carbon pool in soils.Plant Nutrition and Fertilizer Science,7(1):56-63.(in Chinese)
    [18] Oueraogo E,Mando A,Stroosnijder L,2005.Effects of tillage,organic resources and nitrogen fertiliser on soil carbon dynamics and crop nitrogen uptake in semi-arid West Africa.Soil Till.Res.,91 (1-2):57-67.DOI:10.1016/j.still.2005.11.004
    [19] Shao J A,Huang X X,Gao M et al.,2005.Response of CH4 emission from paddy fields to land management practices at a microcosmic cultivation scale.Journal of Environmental Sciences,17(4):691-698.
    [20] Shao J A,Tang X H,Wei C F et al.,2007a.Effects of conservation tillage on soil organic matter in paddy rice cultivation.Acta Ecologica Sinica,27(11):4434-4442.DOI:10.1016/S1872-2032(08)60001-3
    [21] Shao J A,Wei C F,Xie D T,2007b.Effects of conservation tillage and wheat cultivation of paddy field on soil nutrients.Transactions of the CSAE,23(10):62-70.
    [22] Soil Survey Division Staff,1993.Soil Survey Manual.Washington,DC:United States Dept.of Agriculture.
    [23] Vance E D,Brookes P C,Jenkinson D S,1987.An extraction method for measuring soil microbial C.Soil Biol.Biochem.,19(6):703-707.DOI:10.1016/0038-0717(87)90052-6
    [24] Wei Chaofu,Gao Ming,Che Fucai et al.,1989.Aggregation of paddy soil under ridge culture and no tillage.Journal of Southwest Agricultural University,11 (1):17-21.(in Chinese)
    [25] Wei Chaofu,Gao Ming,Che Fucai et al.,1990.Soil aggregate and soil moisture-thermal regime in paddy field under no-tillage and ridge culture.Acta Pedologica Sinica,27(2):172-178.(in Chinese)
    [26] Wei Chaofu,Xie Deti,Chen Shizheng,1996.Relationship between organic-mineral complexing and soil particle aggregation in paddy soils developed from purple soils.Acta Pedologica Sinica,33(1):70-77.(in Chinese)
    [27] Willson T C,Paul E A,Harwood R R,2001.Biologically active soil organic matter fractions in sustainable cropping systems.Appl.Soil Ecol.,16(1):63-76.DOI:10.1016/S0929-1393(00)00077-9
    [28] Wright A L,Hons F M,Matocha Jr J E,2005.Tillage impacts on microbial biomass and soil carbon and nitrogen dynamics of corn and cotton rotations.Appl Soil Ecol.,29(1):85-92.DOI:10.1016/j.apsoil.2004.09.006
    [29] Xiao Jianying,Zhang Lei,Xie Deti,et al.,2002.Study on the relationship between soil microbes and soil fertility paddy fields of long-term no-tillage and ridge culture.Journal of Southwest Agricultural University,24(1):82-85.(in Chinese)
    [30] Xie Deti,Chen Shaolan,2002.Theory and Technique of Paddy under Soil Virginization.Chongqing:Chongqing Publishing House.(in Chinese)
    [31] Yang C M,Yang L Z,Ouyang Z,2005.Organic carbon and its fractions in paddy soil as affected by different nutrient and water regimes.Geoderma,124(1-2):133-142.DOI: 10.1016/j.geoderma.2004.04.008
  • [1] Qian WANG, Shuxia JIA, Aizhen LIANG, Xuewen CHEN, Shixiu ZHANG, Yan ZHANG, B MCLAUGHLIN Neil, Yan GAO, Dandan HUANG.  Residue Return Effects Outweigh Tillage Effects on Soil Microbial Communities and Functional Genes in Black Soil Region of Northeast China . Chinese Geographical Science, 2023, 33(4): 679-692. doi: 10.1007/s11769-023-1335-3
    [2] Guangxuan YAN, Jieqi WANG, Tingting LUO, Weiwei CHEN, Yun SHAO, Chunxi LI.  A Meta-analysis of No-tillage Effects on Greenhouse Gas Emissions from Wheat-based Rotation Cropping Agroecosystem in China . Chinese Geographical Science, 2023, 33(3): 503-511. doi: 10.1007/s11769-023-1356-y
    [3] Alireza JAMSHIDI, Masomeh JAMSHIDI, Bijan ABADI.  Determinants of Adaptation to Climate Change: A Case Study of Rice Farmers in Western Province, Iran . Chinese Geographical Science, 2022, 32(1): 110-126. doi: 10.1007/s11769-021-1246-0
    [4] WANG Zhaofeng, GONG Dianqing, ZHANG Yili.  Investigating the Effects of Greenhouse Vegetable Cultivation on Soil Fertility in Lhasa, Tibetan Plateau . Chinese Geographical Science, 2020, 30(3): 456-465. doi: 10.1007/s11769-020-1118-z
    [5] WANG Renjing, LI Xiubin, TAN Minghong, XIN Liangjie, WANG Xue, WANG Yahui, JIANG Min.  Inter-provincial Differences in Rice Multi-cropping Changes in Main Double-cropping Rice Area in China: Evidence from Provinces and Households . Chinese Geographical Science, 2019, 20(1): 127-138. doi: 10.1007/s11769-018-0972-4
    [6] WANG Jun, MI Wenkui, SONG Peipei, XIE Hui, ZHU Lusheng, WANG Jinhua.  Cultivation Ages Effect on Soil Physicochemical Properties and Heavy Metal Accumulation in Greenhouse Soils . Chinese Geographical Science, 2018, 28(4): 717-726. doi: 10.1007/s11769-018-0980-4
    [7] GONG Li, LIU Guohua, WANG Meng, YE Xin, WANG Hao, LI Zongshan.  Effects of Vegetation Restoration on Soil Organic Carbon in China: A Meta-analysis . Chinese Geographical Science, 2017, 27(2): 188-200. doi: 10.1007/s11769-017-0858-x
    [8] WANG Dandan, YAN Yechao, LI Xinhui, SHI Xuezheng, ZHANG Zhongqi, David C WEINDORF, WANG Hongjie, XU Shengxiang.  Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils . Chinese Geographical Science, 2017, 27(3): 351-361. doi: 10.1007/s11769-017-0868-8
    [9] SUI Yueyu, JIAO Xiaoguang, CHEN Wenting, LIU Xiaobing, ZHANG Xingyi, DING Guangwei.  Labile Organic Matter Content and Distribution as Affected by Six-year Soil Amendments to Eroded Chinese Mollisols . Chinese Geographical Science, 2013, 23(6): 692-699. doi: 10.1007/s11769-013-0639-0
    [10] FAN Ruqin, ZHANG Xiaoping, YANG Xueming, LIANG Aizhen, JIA Shuxia, CHEN Xuewen.  Effects of Tillage Management on Infiltration and Preferential Flow in a Black Soil, Northeast China . Chinese Geographical Science, 2013, 23(3): 312-320. doi: 10.1007/s11769-013-0606-9
    [11] LIU Zigang1, WANG Ming2, 3, MA Xuehui2.  Estimation of Storage and Density of Organic Carbon in Peatlands of China . Chinese Geographical Science, 2012, 22(6): 637-646.
    [12] ZHANG Guilan.  Changes of Soil Labile Organic Carbon in Different Land Uses in Sanjiang Plain, Heilongjiang Province . Chinese Geographical Science, 2010, 20(2): 139-143. doi: 10.1007/s11769-010-0139-4
    [13] DONG Yuxiang, S L NAMIKAS, P A HESP, MA Jun.  Field Measurements of Influence of Sand Transport Rate on Structure of Wind-sand Flow over Coastal Transverse Ridge . Chinese Geographical Science, 2008, 18(3): 255-261. doi: 10.1007/s11769-008-0255-6
    [14] WEN Yanmao, WEI Xiange, SHU Tingfei, ZHOU Jingfeng, YU Guanghui, LI Feng, HUANG Yanyun.  Forms and Balance of Nitrogen and Phosphorus in Cage Culture Waters in Guangdong Province, China . Chinese Geographical Science, 2007, 17(4): 370-375. doi: 10.1007/s11769-007-0370-9
    [15] LUO Jinming, DENG Wei, ZHANG Xiaoping, YANG Fan, LI Xiujun.  Characteristics of Channeling Flow in Cultivated Horizon of Saline Rice Soil . Chinese Geographical Science, 2006, 16(4): 342-346.
    [16] KANG Guo-ding, CAI Zu-cong, ZHANG Zi-heng, XIAO Peng-feng.  ESTIMATE OF METHANE EMISSIONS FROM RICE FIELDS IN CHINA BY CLIMATE-BASED NET PRIMARY PRODUCTIVITY . Chinese Geographical Science, 2004, 14(4): 326-331.
    [17] XIE Gao-di, CHEN Shen-bin, QI Wen-hu, LU Yao, YANG Xing-wei, LIU Cheng-liang.  A MULTIDISCIPLINARY AND INTEGRATED STUDY OF RICE PRECISION FARMING . Chinese Geographical Science, 2003, 13(1): 9-14.
    [18] HE Ping, WANG Bao-zhong.  THE PRELIMINARY STUDY ON LANDSCAPE CULTURE ORIENTATION AND EXPLOITATION OF THE SOUTH DONGTING LAKE WETLAND . Chinese Geographical Science, 2002, 12(3): 254-261.
    [19] 沙润, 石高俊, 储少莹.  PHYSICAL GEOGRAPHICAL BACKGROUND OF THE CULTURE OF TRADITIONAL CHINESE RESIDENTIAL ARCHITECTURE . Chinese Geographical Science, 1999, 9(1): 26-32.
    [20] 黄镇国.  ON THE ORIGIN OF RICE AGRICULTURE IN SOUTHERN CHINA AND ITS PROPAGATION EAST ASIA . Chinese Geographical Science, 1994, 4(4): 289-294.
  • 加载中
计量
  • 文章访问数:  1249
  • HTML全文浏览量:  21
  • PDF下载量:  805
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-12-23
  • 修回日期:  2009-04-27
  • 刊出日期:  2009-09-20

Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation

doi: 10.1007/s11769-009-0241-7
    基金项目:  Under the auspices of Key Project of National Natural Science Foundation of China (No.40231016)
    通讯作者: WEI Chaofu.E-mail:weicf@swu.edu.cn

摘要: A research trial with four land management practices, i.e., traditional tillage-fallow (TTF), traditional tillage-wheat (TTW), conservation tillage-fallow (CTF) and conservation tillage-wheat (CTW), was sampled in the 15th year after its establishment to assess the effects of different management practices on labile organic carbon fractions (LOCFs), such as easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), particulate organic carbon (POC) and microbial biomass carbon (MBC) in a typical paddy soil, Chongqing, Southwest China. The results indicated that LOCFs were significantly influenced by the combination of no-tillage, ridge culture and crop rotation. And, different combination patterns showed different effectiveness on soil LOCFs. The effects of no-tillage, ridge culture and wheat cultivation on EOC, DOC, POC and MBC mainly happened at 0-10cm. At this depth, soil under CTW had higher EOC, DOC, POC and MBC contents, compared to TTF, TTW and CTF, respectively. Moreover, the contents of LOCFs for different practices generally decreased when the soil depth increased. Our findings suggest that the paddy soil in Southwest China could be managed to concentrate greater quantities of EOC, DOC, POC and MBC.

English Abstract

SHAO Jing'an, LI Yangbing, WEI Chaofu, XIE Deti. Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation[J]. 中国地理科学, 2009, 19(3): 241-248. doi: 10.1007/s11769-009-0241-7
引用本文: SHAO Jing'an, LI Yangbing, WEI Chaofu, XIE Deti. Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation[J]. 中国地理科学, 2009, 19(3): 241-248. doi: 10.1007/s11769-009-0241-7
SHAO Jing'an, LI Yangbing, WEI Chaofu, XIE Deti. Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation[J]. Chinese Geographical Science, 2009, 19(3): 241-248. doi: 10.1007/s11769-009-0241-7
Citation: SHAO Jing'an, LI Yangbing, WEI Chaofu, XIE Deti. Effects of Land Management Practices on Labile Organic Carbon Fractions in Rice Cultivation[J]. Chinese Geographical Science, 2009, 19(3): 241-248. doi: 10.1007/s11769-009-0241-7
参考文献 (31)

目录

    /

    返回文章
    返回