[1] Akbari H, Kolokotsa D, 2016. Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, 133: 834–842. doi:  10.1016/j.enbuild.2016.09.067
[2] Alahmad B, Tomasso L P, Al-Hemoud A et al., 2020. Spatial distribution of land surface temperatures in kuwait: urban heat and cool islands. International Journal of Environmental Research and Public Health, 17(9): 2993. doi:  10.3390/ijerph17092993
[3] Bindajam A A, Mallick J, Alqadhi S et al., 2020. Impacts of vegetation and topography on land surface temperature variability over the semi-arid mountain cities of saudi arabia. Atmosphere, 11(7): 762. doi:  10.3390/atmos11070762
[4] Bonafoni S, Baldinelli G, Verducci, 2017. Sustainable strategies for smart cities: analysis of the town development effect on surface urban heat island through remote sensing methodologies. Sustainable Cities and Society, 29: 211–218. doi:  10.1016/j.scs.2016.11.005
[5] Debbage N, Shepherd J M, 2015. The urban heat island effect and city contiguity. Computers, Environment and Urban Systems, 54: 181–194. doi:  10.1016/j.compenvurbsys.2015.08.002
[6] Du H Y, Wang D D, Wang Y Y et al., 2016. Influences of land cover types, meteorological conditions, anthropogenic heat and urban area on surface urban heat island in the yangtze river delta urban agglomeration. Science of the Total Environment, 571: 461–470. doi:  10.1016/j.scitotenv.2016.07.012
[7] Duan S B, Li Z L, Leng P, 2017. A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data. Remote Sensing of Environment, 195: 107–117. doi:  10.1016/j.rse.2017.04.008
[8] Fang Chuanglin, Zhou Chenghu, Gu Chaolin et al., 2016. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations. Acta Geographica Sinica, 71(4): 531–550. (in Chinese)
[9] Fu P, Weng Q H, 2016. A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sensing of Environment, 175: 205–214. doi:  10.1016/j.rse.2015.12.040
[10] Gao J, Yu Z W, Wang L C et al., 2019. Suitability of regional development based on ecosystem service benefits and losses: a case study of the Yangtze River Delta urban agglomeration, China. Ecological Indicators, 107: 105579. doi:  10.1016/j.ecolind.2019.105579
[11] Ge Weiqiang, Zhou Hongmei, Yang Hequn, 2010. Characteristics analysis on heat island effect in Yangtze Delta urban agglomerations in recent 8 years by MODIS data. Meteorological Monthly, 26(11): 77–81. (in Chinese)
[12] Haashemi S, Weng Q H, Darvishi A et al., 2016. Seasonal variations of the surface urban heat island in a semi-arid city. Remote Sensing, 8(4): 352. doi:  10.3390/rs8040352
[13] Han G F, Xu J H, 2013. Land surface phenology and land surface temperature changes along an urban-rural gradient in Yangtze River Delta, China. Environmental Management, 52(1): 234–249. doi:  10.1007/s00267-013-0097-6
[14] Inner Mongolia Autonomous Region Statistics Bureau, 2016. Inner Mongolia Statistical Yearbook 2015.
[15] Jahangir M S, Moghim S, 2019. Assessment of the urban heat island in the city of tehran using reliability methods. Atmospheric Research, 225: 144–156. doi:  10.1016/j.atmosres.2019.03.038
[16] Lazzarini M, Marpu P R, Ghedira H, 2013. Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sensing of Environment, 130: 136–152. doi:  10.1016/j.rse.2012.11.007
[17] Lemoine-Rodríguez R, Inostroza L, Zepp H, 2022. Intraurban heterogeneity of space-time land surface temperature trends in six climate-diverse cities. Science of the Total Environment, 804: 150037. doi:  10.1016/j.scitotenv.2021.150037
[18] Li W F, Han C M, Li W J et al., 2020. Multi-scale effects of urban agglomeration on thermal environment: a case of the Yangtze River Delta Megaregion, China. Science of the Total Environment, 713: 136556. doi:  10.1016/j.scitotenv.2020.136556
[19] Liao D Q, Zhu H N, Jiang P, 2021. Study of urban heat island index methods for urban agglomerations (hilly terrain) in Chongqing. Theoretical and Applied Climatology, 143(1): 279–289. doi:  10.1007/s00704-020-03433-8
[20] Lin Zhongli, Xu Hanqiu, Chen Hong, 2018. Urban heat island change and its relationship to the urbanization of three major urban agglomerations in China’s eastern coastal region. Research of Environmental Sciences, 31(10): 1695–1704. (in Chinese)
[21] Luintel N, Ma Weiqiang, Ma Yaoming et al., 2019. Spatial and temporal variation of daytime and nighttime MODIS land surface temperature across Nepal. Atmospheric and Oceanic Science Letters, 12(5): 305–312. doi:  10.1080/16742834.2019.1625701
[22] Majumder A, Setia R, Kingra P K et al., 2021. Estimation of land surface temperature using different retrieval methods for studying the spatiotemporal variations of surface urban heat and cold islands in indian punjab. Environment, Development and Sustainability, 23(11): 15921–15942. doi:  10.1007/s10668-021-01321-3
[23] Mathew A, Khandelwal S, Kaul N, 2018. Analysis of diurnal surface temperature variations for the assessment of surface urban heat island effect over Indian cities. Energy and Buildings, 159: 271–295. doi:  10.1016/j.enbuild.2017.10.062
[24] Mohammad P, Goswami A, Bonafoni S, 2019. The impact of the land cover dynamics on surface urban heat island variations in semi-arid cities: a case study in Ahmedabad City, India, using multi-sensor/source data. Sensors, 19(17): 3701. doi:  10.3390/s19173701
[25] Naserikia M, Asadi Shamsabadi E, Rafieian M et al., 2019. The urban heat island in an urban context: a case study of Mashhad, Iran. International Journal of Environmental Research and Public Health, 16(3): 313. doi:  10.3390/ijerph16030313
[26] Oleson K W, Monaghan A, Wilhelmi O et al., 2015. Interactions between urbanization, heat stress, and climate change. Climatic Change, 129(3–4): 525–541. doi:  10.1007/s10584-013-0936-8
[27] Peng J, Xie P, Liu Y X et al., 2016. Urban thermal environment dynamics and associated landscape pattern factors: a case study in the Beijing metropolitan region. Remote Sensing of Environment, 173: 145–155. doi:  10.1016/j.rse.2015.11.027
[28] Peng S S, Piao S L, Ciais P et al., 2012. Surface urban heat island across 419 global big cities. Environmental Science & Technology, 46(2): 696–703. doi:  10.1021/es2030438
[29] Qiao Zhi, Tian Guangjin, 2015. Dynamic monitoring of the footprint and capacity for urban heat island in Beijing between 2001 and 2012 based on MODIS. Journal of Remote Sensing, 19(2): 476–484. (in Chinese)
[30] Qin Menglin, Song Wenbo, Song Yuanzhen et al., 2020. Study on spatial features and evolutionary trend of heat islands in Beibu Gulf urban agglomeration. Journal of Safety and Environment, 20(4): 1557–1566. (in Chinese)
[31] Quintana-Talvac C, Corvacho-Ganahin O, Smith P et al., 2021. Urban heat islands and vulnerable populations in a mid-size coastal city in an arid environment. Atmosphere, 12(7): 917. doi:  10.3390/atmos12070917
[32] Rasul A, Balzter H, Smith C et al., 2017. A review on remote sensing of urban heat and cool islands. Land, 6(2): 38. doi:  10.3390/land6020038
[33] Seto K C, Güneralp B, Hutyra L R, 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 109(40): 16083–16088. doi:  10.1073/pnas.1211658109
[34] Song Yongyong, Xue Dongqian, Ma Beibei et al., 2020. Urbanization process and its ecological environment response pattern on the Loess Plateau, China. Economic Geography, 40(6): 174–184. (in Chinese)
[35] Stewart I D, 2011. A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, 31(2): 200–217. doi:  10.1002/joc.2141
[36] Sun Y, Hu T, Zhang X B et al., 2019. Contribution of global warming and urbanization to changes in temperature extremes in eastern China. Geophysical Research Letters, 46(20): 11426–11434. doi:  10.1029/2019gl084281
[37] Sun Zongyao, Sun Xihua, Xu Xinliang et al., 2018. Study on the contribution of land use heterogeneity and change to regional thermal environment: a case study of Beijing-Tianjin-Hebei urban agglomeration. Ecology and Environmental Sciences, 27(7): 1313–1322. (in Chinese)
[38] Taha H, 1997. Urban climates and heat islands: albedo, evapotranspiration, and anthropogenic heat. Energy and Buildings, 25(2): 99–103. doi:  10.1016/S0378-7788(96)00999-1
[39] UN-Habitat, 2016. Urbanization and Development: Emerging Futures. Nairobi: UN-Habitat.
[40] United Nations, Department of Economiical and Social Affairs, 2018. World Urbanization Prospects: The 2018 Revision, Highlights. New York: United Nations.
[41] Wang C H, Wang Z H, Li Q, 2020a. Emergence of urban clustering among U. S. cities under environmental stressors. Sustainable Cities and Society, 63: 102481. doi:  10.1016/j.scs.2020.102481
[42] Wang Z Y, Liu M L, Liu X N et al., 2020b. Spatio-temporal evolution of surface urban heat islands in the Chang-Zhu-Tan urban agglomeration. Physics and Chemistry of the Earth, Parts A/B/C, 117: 102865. doi:  10.1016/j.pce.2020.102865
[43] Wu X J, Wang G X, Yao R et al., 2019. Investigating surface urban heat islands in south america based on MODIS data from 2003–2016. Remote Sensing, 11(10): 1212. doi:  10.3390/rs11101212
[44] Wu Z F, Xu Y, Cao Z et al., 2021. Impact of urban agglomeration and physical and socioeconomic factors on surface urban heat islands in the Pearl River Delta Region, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14: 8815–8822. doi:  10.1109/JSTARS.2021.3108456
[45] Xu Jing, Shi Ligao, 2010. Spatial motive mechanism and integrative development mode of Hohhot-Baotou-Ordos region. Journal of Arid Land Resources and Environment, 24(7): 52–57. (in Chinese)
[46] Yao R, Wang L C, Huang X et al., 2017. Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Science of the Total Environment, 609: 742–754. doi:  10.1016/j.scitotenv.2017.07.217
[47] Yu Z W, Yao Y W, Yang G Y et al., 2019a. Spatiotemporal patterns and characteristics of remotely sensed region heat islands during the rapid urbanization (1995–2015) of Southern China. Science of the Total Environment, 674: 242–254. doi:  10.1016/j.scitotenv.2019.04.088
[48] Yu Z W, Yao Y W, Yang G Y et al., 2019b. Strong contribution of rapid urbanization and urban agglomeration development to regional thermal environment dynamics and evolution. Forest Ecology and Management, 446: 214–225. doi:  10.1016/j.foreco.2019.05.046
[49] Yuan W H, Li J C, Meng L et al., 2019. Measuring the area green efficiency and the influencing factors in urban agglomeration. Journal of Cleaner Production, 241: 118092. doi:  10.1016/j.jclepro.2019.118092
[50] Yun G Y, Ngarambe J, Duhirwe P N et al., 2020. Predicting the magnitude and the characteristics of the urban heat island in coastal cities in the proximity of desert landforms. The case of Sydney. Science of the Total Environment, 709: 136068. doi:  10.1016/j.scitotenv.2019.136068
[51] Zhang Shuo, Liu Yonghong, Huang Hongtao, 2017. Research on quantitative evaluations and spatial and temporal distribution of heat islands for the Pearl River Delta agglomeration. Ecology and Environmental Sciences, 26(7): 1157–1166. (in Chinese)
[52] Zhao W, Duan S B, 2020. Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated modis/terra land products and msg geostationary satellite data. Remote Sensing of Environment, 247: 111931. doi:  10.1016/j.rse.2020.111931
[53] Zhou D C, Li D, Sun G et al., 2016. Contrasting effects of urbanization and agriculture on surface temperature in eastern China. Journal of Geophysical Research, 121(16): 9597–9606. doi:  10.1002/2016JD025359
[54] Zhuang Yuan, Xue Dongqian, Kuang Wenhui et al., 2019. Study on the pattern of land cover hierarchy in hohhot-baotou- ordos cities in the semi-arid region of China. Remote Sensing Technology and Application, 34(1): 197–206. (in Chinese)