[1] Ahmed T, Singh D, 2020. Probability density functions based classification of MODIS NDVI time series data and monitoring of vegetation growth cycle. Advances in Space Research, 66(4): 873–886. doi:  10.1016/j.asr.2020.05.004
[2] Alcaraz-Segura D, Liras E, Tabik S et al., 2010. Evaluating the consistency of the 1982–1999 NDVI trends in the Iberian Peninsula across four time-series derived from the AVHRR sensor: LTDR, GIMMS, FASIR, and PAL-II. Sensors, 10(2): 1291–1314. doi:  10.3390/s100201291
[3] Beck P S A, Atzberger C, Høgda K A et al., 2006. Improved monitoring of vegetation dynamics at very high latitudes: a new method using MODIS NDVI. Remote Sensing of Environment, 100(3): 321–334. doi:  10.1016/j.rse.2005.10.021
[4] Ben Abbes A, Bounouh O, Farah I R et al., 2018. Comparative study of three satellite image time-series decomposition methods for vegetation change detection. European Journal of Remote Sensing, 51(1): 607–615. doi:  10.1080/22797254.2018.1465360
[5] Caiyun G, Dongsheng Z, Du Z et al., 2021. Effects of grazing on the grassland vegetation community characteristics in Inner Mongolia. Journal of Resources and Ecology, 12(3): 319–331. doi:  10.5814/j.issn.1674-764x.2021.03.002
[6] Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á et al., 2021. A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 7(9): eabc7447. doi:  10.1126/sciadv.abc7447
[7] Carpenter G A, Gopal S, Macomber S et al., 1999. A neural network method for efficient vegetation mapping. Remote Sensing of Environment, 70(3): 326–338. doi:  10.1016/S0034-4257(99)00051-6
[8] Chanda S, Kanke Y, Dalen M et al., 2018. Coefficient of variation from vegetation index for sugarcane population and stalk evaluation. Agrosystems, Geosciences & Environment, 1: 1–9, 180016. doi:  10.2134/age2018.07.0016
[9] Chen M L, Jin J L, Ning S W et al., 2020. Early warning method for regional water resources carrying capacity based on the logical curve and aggregate warning index. International Journal of Environmental Research and Public Health, 17(7): 2206. doi:  10.3390/ijerph17072206
[10] Cristiano P M, Madanes N, Campanello P I et al., 2014. High NDVI and potential canopy photosynthesis of South American subtropical forests despite seasonal changes in leaf area index and air temperature. Forests, 5(2): 287–308. doi:  10.3390/f5020287
[11] Crook D R, Robinson B E, Li P, 2020. The impact of snowstorms, droughts and locust outbreaks on livestock production in Inner Mongolia: anticipation and adaptation to environmental shocks. Ecological Economics, 177: 106761. doi:  10.1016/j.ecolecon.2020.106761
[12] da Silva R M, Santos C A G, Moreira M et al., 2015. Rainfall and river flow trends using Mann-Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Natural Hazards, 77(2): 1205–1221. doi:  10.1007/s11069-015-1644-7
[13] Davi H, Soudani K, Deckx T et al., 2006. Estimation of forest leaf area index from SPOT imagery using NDVI distribution over forest stands. International Journal of Remote Sensing, 27(5): 885–902. doi:  10.1080/01431160500227896
[14] de Jong R, de Bruin S, de Wit A et al., 2011. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sensing of Environment, 115(2): 692–702. doi:  10.1016/j.rse.2010.10.011
[15] Durdu Ö F, 2010. Application of linear stochastic models for drought forecasting in the Büyük Menderes River Basin, western Turkey. Stochastic Environmental Research and Risk Assessment, 24(8): 1145–1162. doi:  10.1007/s00477-010-0366-3
[16] Eastman J R, Sangermano F, Machado E A et al., 2013. Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sensing, 5(10): 4799–4818. doi:  10.3390/rs5104799
[17] Eisavi V, Homayouni S, Yazdi A M et al., 2015. Land cover mapping based on random forest classification of multitemporal spectral and thermal images. Environmental Monitoring and Assessment, 187(5): 291. doi:  10.1007/s10661-015-4489-3
[18] Forkel M, Carvalhais N, Verbesselt J et al., 2013. Trend change detection in NDVI time series: effects of inter-annual variability and methodology. Remote Sensing, 5(5): 2113–2144. doi:  10.3390/rs50521131
[19] Forkel M, Migliavacca M, Thonicke K et al., 2015. Codominant water control on global interannual variability and trends in land surface phenology and greenness. Global Change Biology, 21(9): 3414–3435. doi:  10.1111/gcb.12950
[20] Friedl M A, Davis F W, Michaelsen J et al., 1995. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: an analysis using a scene simulation model and data from FIFE. Remote Sensing of Environment, 54(3): 233–246. doi:  10.1016/0034-4257(95)00156-5
[21] Gocic M, Trajkovic S, 2013. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Global and Planetary Change, 100: 172–182. doi:  10.1016/j.gloplacha.2012.10.014
[22] Gottfried M, Pauli H, Futschik A et al., 2012. Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2(2): 111–115. doi:  10.1038/nclimate1329
[23] Goward S N, Xue Y K, Czajkowski K P, 2002. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: an exploration with the simplified simple biosphere model. Remote Sensing of Environment, 79(2−3): 225–242. doi:  10.1016/S0034-4257(01)00275-9
[24] Guo E L, Wang Y F, Wang C L et al., 2021. NDVI indicates long-term dynamics of vegetation and its driving forces from climatic and anthropogenic factors in Mongolian Plateau. Remote Sensing, 13(4): 688. doi:  10.3390/rs13040688
[25] Hassan J, 2014. ARIMA and regression models for prediction of daily and monthly clearness index. Renewable Energy, 68: 421–427. doi:  10.1016/j.renene.2014.02.016
[26] Haughian S R, Burton P J, 2018. Microclimate differences above ground-layer vegetation in lichen-dominated pine forests of north-central British Columbia. Agricultural and Forest Meteorology, 249: 100–106. doi:  10.1016/j.agrformet.2017.11.029
[27] Huang C Q, Goward S N, Masek J G et al., 2010. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment, 114(1): 183–198. doi:  10.1016/j.rse.2009.08.017
[28] Jia W J, Wang M F, Zhou C H et al., 2021. Analysis of the spatial association of geographical detector-based landslides and environmental factors in the southeastern Tibetan Plateau, China. PLoS ONE, 16(5): e0251776. doi:  10.1371/journal.pone.0251776
[29] Juliana Useya, Chen Shengbo, 2019. Exploring the potential of mapping cropping patterns on smallholder scale croplands using Sentinel-1 SAR data. Chinese Geographical Science, 20(4): 626–639. doi:  10.1007/s11769-019-1060-0
[30] Kamimera H, Lu M J, 2007. Water balance of the Kherlen River basin, eastern Mongolia. Proceedings of Hydraulic Engineering, 51: 397–402. doi:  10.2208/prohe.51.397
[31] Kang Y, Guo E L, Wang Y F et al., 2021. Monitoring vegetation change and its potential drivers in Inner Mongolia from 2000 to 2019. Remote Sensing, 13(17): 3357. doi:  10.3390/rs13173357
[32] Kim S R, Lee W K, Kwak D A et al., 2011. Forest cover classification by optimal segmentation of high resolution satellite imagery. Sensors, 11(2): 1943–1958. doi:  10.3390/s110201943
[33] Li D Q, Lu D S, Zhao Y et al., 2021. Spatial patterns of vegetation coverage change in giant panda habitat based on MODIS time-series observations and local indicators of spatial association. Ecological Indicators, 124: 107418. doi:  10.1016/j.ecolind.2021.107418
[34] Li Ming, Shen Runping, Wang Di et al., 2015. Reconstruction of MODIS-NDVI using S-G filtering based on pixel quality analysis. Journal of Ecology and Rural Environment, 31(3): 425–431. (in Chinese)
[35] Li S G, Romero-Saltos H, Tsujimura M et al., 2007. Plant water sources in the cold semiarid ecosystem of the upper Kherlen River catchment in Mongolia: a stable isotope approach. Journal of Hydrology, 333(1): 109–117. doi:  10.1016/j.jhydrol.2006.07.020
[36] Liu R G, Shang R, Liu Y et al., 2017a. Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory, protection of key point, noise resistance and curve stability. Remote Sensing of Environment, 189: 164–179. doi:  10.1016/j.rse.2016.11.023
[37] Liu X F, Jiang W G, Li J et al., 2017b. Evaluation of the vegetation coverage resilience in areas damaged by the Wenchuan earthquake based on MODIS-EVI data. Sensors, 17(2): 259. doi:  10.3390/s17020259
[38] Lunetta R S, Shao Y, Ediriwickrema J et al., 2010. Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data. International Journal of Applied Earth Observation and Geoinformation, 12(2): 81–88. doi:  10.1016/j.jag.2009.11.005
[39] Mugnani M P, Robertson K M, Miller D L et al., 2019. Longleaf pine patch dynamics influence ground-layer vegetation in old-growth pine Savanna. Forests, 10(5): 389. doi:  10.3390/f10050389
[40] Murray N J, Keith D A, Bland L M et al., 2018. The role of satellite remote sensing in structured ecosystem risk assessments. Science of the Total Environment, 619–620: 249–257. doi:  10.1016/j.scitotenv.2017.11.034
[41] Myers D E, 1994. Spatial interpolation: an overview. Geoderma, 62: 17–28. doi:  10.1016/0016-7061(94)90025-6
[42] Nigam S K, Bhatnagar V, 2018. The systems biology of uric acid transporters: the role of remote sensing and signaling. Current Opinion in Nephrology and Hypertension, 27(4): 305–313. doi:  10.1097/MNH.0000000000000427
[43] Nikonov A V, Davletshin R V, Iakovleva N I et al., 2017. Savitzky-Golay filtering of the spectral sensitivity of photodetector arrays. Journal of Communications Technology and Electronics, 62(9): 1048–1052. doi:  10.1134/S1064226917090170
[44] Oppenheimer C, 1994. Discussion meeting on natural hazard assessment and mitigation: the unique role of remote sensing, the Royal Society, London. Disasters, 18(3): 294–297. doi:  10.1111/j.1467-7717.1994.tb00316.x
[45] Qiao P W, Yang S C, Lei M et al., 2019. Quantitative analysis of the factors influencing spatial distribution of soil heavy metals based on geographical detector. Science of the Total Environment, 664: 392–413. doi:  10.1016/j.scitotenv.2019.01.310
[46] Ren C F, Guo P, Li M et al., 2016. An innovative method for water resources carrying capacity research-Metabolic theory of regional water resources. Journal of Environmental Management, 167: 139–146. doi:  10.1016/j.jenvman.2015.11.033
[47] Ren H, Wang Y L, Huang M Y et al., 2014. Ensemble empirical mode decomposition parameters optimization for spectral distance measurement in hyperspectral remote sensing data. Remote Sensing, 6(3): 2069–2083. doi:  10.3390/rs6032069
[48] Rulinda C M, Bijker W, Stein A, 2011. The chlorophyll variability in Meteosat derived NDVI in a context of drought monitoring. Procedia Environmental Sciences, 3: 32–37. doi:  10.1016/j.proenv.2011.02.007
[49] Sen P K, 1968. Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63: 1379–1389. doi:  10.1080/01621459.1968.10480934
[50] Shadab A, 2019. Box–Jenkins multiplicative ARIMA modeling for prediction of solar radiation: a case study. International Journal of Energy and Water Resources, 3: 305–318. doi:  10.1007/s42108-019-00037-5
[51] Shourov M M, Ishtiak M, 2019. pyMannKendall: a python package for non parametric Mann Kendall family of trend tests. Journal of Open Source Software, 4(39): 1556. doi:  10.21105/joss.01556
[52] Shu M, Zhou L, Gu X et al., 2020. Monitoring of maize lodging using multi-temporal Sentinel-1 SAR data. Advances in Space Research, 65: 470–480. doi:  10.1016/j.asr.2019.09.034
[53] Song Y Z, Wang J F, Ge Y et al., 2020. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data. GIScience & Remote Sensing, 57(5): 593–610. doi:  10.1080/15481603.2020.1760434
[54] Tang L, He M Z, Li X R, 2020. Verification of fractional vegetation coverage and NDVI of desert vegetation via UAVRS technology. Remote Sensing, 12(11): 1742. doi:  10.3390/rs12111742
[55] Tsujimura M, Abe Y, Tanaka T et al., 2007. Stable isotopic and geochemical characteristics of groundwater in Kherlen River basin, a semi-arid region in eastern Mongolia. Journal of Hydrology, 333(1): 47–57. doi:  10.1016/j.jhydrol.2006.07.026
[56] Vasilakos C, Kavroudakis D, Georganta A. 2020. Machine learning classification ensemble of multitemporal Sentinel-2 images: The case of a mixed mediterranean ecosystem. Remote Sensing, 12: 2005. doi:  10.3390/rs12122005.
[57] Verbesselt J, Hyndman R, Newnham G et al., 2010a. Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1): 106–115. doi:  10.1016/j.rse.2009.08.014
[58] Verbesselt J, Hyndman R, Zeileis A et al., 2010b. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of Environment, 114(12): 2970–2980. doi:  10.1016/j.rse.2010.08.003
[59] Wang L, Dronova I, Gong P et al., 2012. A new time series vegetation-water index of phenological-hydrological trait across species and functional types for Poyang Lake wetland ecosystem. Remote Sensing of Environment, 125: 49–63. doi:  10.1016/j.rse.2012.07.003
[60] Wang W, Samat A, Abuduwaili J, 2019. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia. Remote Sensing for Land & Resources, 31(4): 32–40. (in Chinese). doi:  10.6046/gtzyyg.2019.04.05
[61] Wu D H, Wu H, Zhao X et al., 2014. Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011. Remote Sensing, 6(5): 4217–4239. doi:  10.3390/rs6054217
[62] Xu L L, Yu G M, Tu Z F et al., 2020. Monitoring vegetation change and their potential drivers in Yangtze River Basin of China from 1982 to 2015. Environmental Monitoring and Assessment, 192(10): 642. doi:  10.1007/s10661-020-08595-6
[63] Xu X J, Liu H Y, Lin Z S et al., 2019. Relationship of abrupt vegetation change to climate change and ecological engineering with multi-timescale analysis in the Karst Region, Southwest China. Remote Sensing, 11(13): 1564. doi:  10.3390/rs11131564
[64] Yao J, He X Y, Li X Y et al., 2012. Monitoring responses of forest to climate variations by MODIS NDVI: a case study of Hun River upstream, northeastern China. European Journal of Forest Research, 131(3): 705–716. doi:  10.1007/s10342-011-0543-z
[65] Zhao Y J, Deng Q Y, Lin Q et al., 2020. Cadmium source identification in soils and high-risk regions predicted by geographical detector method. Environmental Pollution, 263: 114338. doi:  10.1016/j.envpol.2020.114338
[66] Zhu G F, Zhu H Q, Yang C H et al., 2017. Improved Savitzky-Golay filtering algorithm for measuring a pharmaceutical vial’s oxygen content based on wavelength modulation spectroscopy. Journal of Optical Technology, 84(5): 355–359. doi:  10.1364/JOT.84.000355