[1] Adams C A, Andrews J E, Jickells T, 2012. Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Science of the Total Environment, 434:240-251. doi: 10.1016/j.scitotenv.2011.11.058
[2] An S Q, Gu B H, Zhou C F et al., 2007. Spartina Invasion in China:implications for invasive species management and future research. Weed Research, 47(3):183-191. doi: 10.1111/j.1365-3180.2007.00559.x
[3] Bagwell C E, Lovell C R, 2000. Persistence of selected Spartina alterniflora rhizoplane diazotrophs exposed to natural and manipulated environmental variability. Applied and Environmental Microbiology, 66(11):4625-4633. doi: 10.1128/AEM.66.11.4625-4633.2000
[4] Bai J H, Zhang G L, Zhao Q Q et al., 2016. Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Scientific Reports, 6(1):34835. doi: 10.1038/srep34835
[5] Bianchi TS, Allison M A, Zhao J, et al., 2013. Historical reconstruction of mangrove expansion in the Gulf of Mexico:linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science, 119:7-16. doi: 10.1016/j.ecss.2012.12.007
[6] Bills J S, Jacinthe P A, Tedesco L P, 2010. Soil organic carbon pools and composition in a wetland complex invaded by reed canary grass. Biology and Fertility of Soils, 46(7):697-706. doi: 10.1007/s00374-010-0476-6
[7] Bradley P M, Morris J T, 1990. Influence of oxygen and sulfide concentration on nitrogen uptake kinetics in Spartina alterniflora. Ecology, 71(1):282-287. doi: 10.2307/1940267
[8] Bruno J F, Kennedy C W, 2000. Patch-size dependent habitat modification and facilitation on New England cobble beaches by Spartina alterniflora. Oecologia, 122(1):98-108. doi: 10.1007/PL00008841
[9] Caffrey J M, Murrell M C, Wigand C et al., 2007. Effect of nutrient loading on biogeochemical and microbial processes in a New England salt marsh. Biogeochemistry, 82(3):251-264. doi: 10.1007/s10533-007-9068-4
[10] Chambers R M, Mozdzer T J, Ambrose J C, 1998. Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarsh. Aquatic Botany, 62(3):161-169. doi: 10.1016/s0304-3770(98)00095-3
[11] Chen Y P, Chen G C, Ye Y, 2015. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation. Science of the Total Environment, 526:19-28. doi: 10.1016/j.scitotenv.2015.04.077
[12] Chmura G L, 2013. What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean & Coastal Management, 83:25-31. doi: 10.1016/j.ocecoaman.2011.09.006
[13] Cook B J, Hauer F R, 2007. Effects of hydrologic connectivity on water chemistry, soils, and vegetation structure and function in an intermontane depressional wetland landscape. Wetlands, 27(3):719-738. doi: 10.1672/0277-5212(2007)27[719:EOHCOW]2.0.CO;2
[14] Derry L A, Murray R W, 2004. Continental margins and the sulfur cycle. Science, 303(5666):1981-1982. doi:10.1126/science. 303.5666.1981
[15] Ehrenfeld J G, 2010. Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution, and Systematics, 41:59-80. doi: 10.1146/annurev-ecolsys-102209-144650
[16] Feller I C, Lovelock C E, Berger U et al., 2010. Biocomplexity in mangrove ecosystems. Annual Review of Marine Science, 2:395-417. doi: 10.1146/annurev.marine.010908.163809
[17] Gao Jianhua, Yang Guishan, Ou Weixin, 2005. Analysizing and quantitatively evaluating the organic matter source at different ecologic zones of tidal salt marsh, North Jiangsu Province. Environmental Science, 26(6):51-56. (in Chinese)
[18] He Z L, Wu J, O'Donnell A G et al., 1997. Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biology and Fertility of Soils, 24(4):421-428. doi: 10.1007/s003740050267
[19] Idaszkin Y L, Bouza P, Marinho C H et al., 2014. Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh. Marine Pollution Bulletin, 89(1-2):444-450. doi: 10.1016/j.marpolbul.2014.10.001
[20] Itanna F, 2005. Sulfur distribution in five Ethiopian Rift Valley soils under humid and semi-arid climate. Journal of Arid Environments, 62(4):597-612. doi: 10.1016/j.jaridenv.2005.01.010
[21] Jackson R B, Banner J L, Jobbágy E G et al., 2002. Ecosystem carbon loss with woody plant invasion of grasslands. Nature, 418(6898):623-626. doi: 10.1038/nature00910
[22] Jin B S, Lai D Y F, Gao D Z, et al., 2017. Changes in soil organic carbon dynamics in a native C4 plant-dominated tidal marsh following Spartina alterniflora invasion. Pedosphere, 27(5):856-867. doi: 10.1016/S1002-0160(17)60396-5
[23] Jobbágy E G, Jackson R B, 2002. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2):423-436. doi:10.1890/1051-0761 (2000)010[0423:TVDOSO]2.0.CO;2
[24] Li B, Liao C H, Zhang X D et al., 2009. Spartina alterniflora invasions in the Yangtze River Estuary, China:an overview of current status and ecosystem effects. Ecological Engineering, 35(4):511-520. doi: 10.1016/j.ecoleng.2008.05.013
[25] Li Yangfan, Zhu Xiaodong, Zuo Xinqin et al., 2005. Study on landscape ecosystem of coastal wetlands in Yancheng, Jiangsu Province. Marine Science Bulletin, 24(4):46-51. (in Chinese)
[26] Liao C Z, Luo Y Q, Jiang L F et al., 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems, 10(8):1351-1361. doi: 10.1007/s10021-007-9103-2
[27] Liao C Z, Peng R H, Lou Y Q et al., 2008a. Altered ecosystem carbon and nitrogen cycles by plant invasion:a meta-analysis. New Phytologist, 177(3):706-714. doi: 10.1111/j.1469-8137.2007.02290.x
[28] Liao C Z, Luo Y Q, Fang C M et al., 2008b. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary. Oecologia, 156(3):589-600. doi: 10.1007/s00442-008-1007-0
[29] Liao Chengzhang, Tang Xiaoping, Cheng Xiaoling et al., 2010. Nitrogen dynamics of aerial litter of exotic Spartina alterniflora and native Phragmites australis. Biodiversity Science, 18(6):631-637. (in Chinese)
[30] Liu C Y, Jiang H X, Hou Y Q et al., 2010. Habitat changes for breeding waterbirds in Yancheng National Nature Reserve, China:a remote sensing study. Wetlands, 30(5):879-888. doi: 10.1007/s13157-010-0070-6
[31] Liu J E, Zhou H X, Qin P et al., 2009. Comparisons of ecosystem services among three conversion systems in Yancheng National Nature Reserve. Ecological Engineering, 35(5):609-629. doi: 10.1016/j.ecoleng.2008.09.007
[32] Loomis M J, Craft C B, 2010. Carbon sequestration and nutrient (nitrogen, phosphorus) accumulation in river-dominated tidal marshes, Georgia, USA. Soil Science Society of America Journal, 74(3):1028-1036. doi: 10.2136/sssaj2009.0171
[33] Lövei G L, 1997. Biodiversity:global change through invasion. Nature, 388(6643):627-628. doi: 10.1038/41665
[34] Lu Rukun, 1999. Soil Agrochemistry Analysis Method. Beijing:China Agriculture Science Press, 106-150. (in Chinese)
[35] Lu W Z, Xiao J F, Liu F et al., 2017. Contrasting ecosystem CO2 fluxes of inland and coastal wetlands:a meta-analysis of eddy covariance data. Global Change Biology, 23(3):1180-1198. doi: 10.1111/gcb.13424
[36] Ma Z J, Li W J, Wang Z J et al., 1998. Habitat change and protection of the red-crowned crane (Grus japonensis) in Yancheng Biosphere Reserve, China. Ambio, 27(6):461-464.
[37] Ma Z J, Wang Y, Gan X J et al., 2009. Waterbird population changes in the wetlands at Chongming Dongtan in the Yangtze River Estuary, China. Environmental Management, 43(6):1187-1200. doi: 10.1007/s00267-008-9247-7
[38] Ministry of Environmental Protection of the People's Republic of China, 2013. Notice on the area, scope and functional zoning of 28 national nature reserves in Daituo, Hebei Province, etc. Available at http://finance.china.com.cn/roll/20130722/1660589.shtml. 2013-07-22. (in Chinese)
[39] Mitsch W J, Bernal B, Nahlik A M et al., 2013. Wetlands, carbon, and climate change. Landscape Ecology, 28(4):583-597. doi: 10.1007/s10980-012-9758-8
[40] Morris J T, Sundareshwar P V, Nietch C T et al., 2002. Responses of coastal wetlands to rising sea level. Ecology, 83(10):2869-2877. doi:10.1890/0012-9658(2002)083[2869:ROCWTR] 2.0.CO;2
[41] Pedersen O, Binzer T, Borum J, 2004. Sulphide intrusion in eelgrass (Zostera marina L.). Plant, Cell & Environment, 27(5):595-602. doi: 10.1111/j.1365-3040.2004.01173.x
[42] Pyšek P, Jarošík V, Hulme P E et al., 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems:the interaction of impact measures, invading species' traits and environment. Global Change Biology, 18(5):1725-1737. doi: 10.1111/j.1365-2486.2011.02636.x
[43] Ramsar, 2013. The Ramsar Convention Manual. 6th ed. Switzerland:Ramsar Convention Secretariat.
[44] Reddy K R, DeLaune R D, 2008. Biogeochemistry of Wetlands:Science and Applications, 1st ed. Boca Raton, FL:CRC Press, 447-476. doi: https://doi.org/10.1201/9780203491454
[45] Sardans J, Peñuelas J, 2014. Hydraulic redistribution by plants and nutrient stoichiometry:shifts under global change. Ecohydrology, 7(1):1-20. doi: 10.1002/eco.1459
[46] Sardans J, Bartrons M, Margalef O et al., 2017. Plant invasion is associated with higher plant-soil nutrient concentrations in nutrient-poor environments. Global Change Biology, 23(3):1282-1291. doi: 10.1111/gcb.13384
[47] Silver W L, Kueppers L M, Lugo A E et al., 2004. Carbon sequestration and plant community dynamics following reforestation of tropical pasture. Ecological Applications, 14(4):1115-1127. doi: 10.1890/03-5123
[48] Souza-Alonso P, Guisande-Collazo A, González L, 2015. Gradualism in Acacia dealbata Link invasion:impact on soil chemistry and microbial community over a chronological sequence. Soil Biology and Biochemistry, 80:315-323. doi: 10.1016/j.soilbio.2014.10.022
[49] Srivastava P P, Pandiaraj T, Susmita D et al., 2017. Characteristics of soil organic carbon, total nitrogen and C/N ratio in Tasar silkworm growing regions of Jharkhand and Bihar States. Imperial Journal of Interdisciplinary Research, 3(5):426-429.
[50] Stribling J M, 1997. The relative importance of sulfate availability in the growth of Spartina alterniflora and Spartina cynosuroides. Aquatic Botany, 56(2):131-143. doi: 10.1016/S0304-3770(96)01102-3
[51] Sun Z G, Mou X J, Song H L et al., 2013. Sulfur biological cycle of the different Suaeda salsa marshes in the intertidal zone of the Yellow River estuary, China. Ecological Engineering, 53:153-164. doi: 10.1016/j.ecoleng.2012.12.036
[52] Wan S W, Qin P, Li Y et al., 2001. Wetland creation for rare waterfowl conservation:a project designed according to the principles of ecological succession. Ecological Engineering, 18(1):115-120. doi: 10.1016/s0925-8574(01)00062-3
[53] Wang Qing, An Shuqing, Ma Zhijun et al., 2006. Invasive Spartina alterniflora:biology, ecology and management. Acta Phytotaxonomica Sinica, 44(5):559-588. (in Chinese)
[54] Wang W Q, Wang C, Sardans J et al., 2015. Plant invasive success associated with higher N-use efficiency and stoichiometric shifts in the soil-plant system in the Minjiang River tidal estuarine wetlands of China. Wetlands Ecology and Management, 23(5):865-880. doi: 10.1007/s11273-015-9425-3
[55] Wang W Q, Sardans J, Wang C et al., 2019. The response of stocks of C, N, and P to plant invasion in the coastal wetlands of China. Global Change Biology, 25(2):733-743. doi: 10.1111/gcb.14491
[56] Wen Y, Zhao H, Chen X L et al., 2013. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China. Ecological Engineering, 61:50-57. doi:10.1016/j.ecoleng. 2013.09.056
[57] Wolkovich E M, Lipson D A, Virginia R A et al., 2010. Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland. Global Change Biology, 16(4):1351-1365. doi: 10.1111/j.1365-2486.2009.02001.x
[58] Yang S G, Li J H, Zheng Z et al., 2009. Characterization of Spartina alterniflora as feedstock for anaerobic digestion. Biomass and Bioenergy, 33(4):597-602. doi: 10.1016/j.biombioe.2008.09.007
[59] Yang W, Zhao H, Chen X L et al., 2013. Consequences of short-term C4 plant Spartina alterniflora invasions for soil organic carbon dynamics in a coastal wetland of Eastern China. Ecological Engineering, 61:50-57. doi:10.1016/j.ecoleng. 2013.09.056
[60] Yin Xijie, Zhou Huaiyang, Yang Qunhui et al., 2010. Sulfate reduction and reduced sulfur speciation in the coastal sediments of Qi'ao Island in the Zhujiang estuary in China. Acta Oceanologica Sinica, 32(3):31-39. (in Chinese)
[61] Yu X Q, Yang J, Liu L M et al., 2015. Effects of spartina alterniflora invasion on biogenic elements in a subtropical coastal mangrove wetland. Environmental Science and Pollution Research, 22(4):3107-3115. doi: 10.1007/s11356-014-3568-2
[62] Yuan J J, Ding W X, Liu D Y et al., 2015. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Global Change Biology, 21(4):1567-1580. doi: 10.1111/gcb.12797
[63] Zhang Xianglin, Shi Shengli, Pan Genxing et al., 2008. Changes in eco-chemical properties of a mangrove wetland under Spartina invasion from Zhangjiangkou, Fujian, China. Advances in Earth Science, 23(9):974-981. (in Chinese)
[64] Zhang C B, Wang J, Qian B Y et al., 2009. Effects of the invader Solidago canadensis on soil properties. Applied Soil Ecology, 43(2-3):163-169. doi: 10.1016/j.apsoil.2009.07.001
[65] Zhang Huabing, Liu Hongyu, Li Yufeng et al., 2013. Spatial variation of soil moisture/salinity and the relationship with vegetation under natural conditions in Yancheng coastal wetland. Environmental Science, 34(2):540-546. (in Chinese)
[66] Zhang H, Wu P B, Yin A J et al., 2016. Organic carbon and total nitrogen dynamics of reclaimed soils following intensive agricultural use in eastern China. Agriculture, Ecosystems & Environment, 235:193-203. doi: 10.1016/j.agee.2016.10.017
[67] Zhou C F, An S Q, Deng Z F et al., 2009. Sulfur storage changed by exotic Spartina alterniflora in coastal saltmarshes of China. Ecological Engineering, 35(4):536-543. doi: 10.1016/j.ecoleng.2008.01.004
[68] Zhou J L, Wu Y, Kang Q S et al., 2007. Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuarine, Coastal and Shelf Science, 71(1-2):47-59. doi: 10.1016/j.ecss.2006.08.012