[1] Adhikari K, Owens P R, Libohova Z et al., 2019. Assessing soil organic carbon stock of Wisconsin, USA and its fate under future land use and climate change. Science of the Total Environment, 667: 833–845. doi:  10.1016/j.scitotenv.2019.02.420
[2] Ardö J, Olsson L, 2003. Assessment of soil organic carbon in semi-arid Sudan using GIS and the CENTURY model. Journal of Arid Environments, 54(4): 633–651. doi:  10.1006/jare.2002.1105
[3] Chiti T, Gardin L, Perugini L et al., 2012. Soil organic carbon stock assessment for the different cropland land uses in Italy. Biology & Fertility of Soils, 48(1): 9–17. doi:  10.1007/s00374-011-0599-4
[4] Fitton N, Datta A, Smith K et al., 2014. Assessing the sensitivity of modelled estimates of N2O emissions and yield to input uncertainty at a UK cropland experimental site using the DailyDayCent model. Nutrient Cycling in Agroecosystems, 99(1–3): 119–133.
[5] Huang S, Sun Y, Zhang W, 2012. Changes in soil organic carbon stocks as affected by cropping systems and cropping duration in China’s paddy fields: a meta–analysis. Climatic Change, 112(3–4): 847–858. doi:  10.1007/s10584-011-0255-x
[6] Jenkinson D S, Rayner J H, 1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science, 123(5): 298–305. doi:  10.1097/00010694-197705000-00005
[7] Jin L, Li Y, Gao Q et al., 2008. Estimate of carbon sequestration under cropland management in China. Scientia Agricultura Sinica, 41(3): 734–743. doi:  10.3724/SP.J.1005.2008.01083
[8] Korsaeth A, Henriksen T M, Roer A G et al., 2014. Effects of regional variation in climate and SOC decay on global warming potential and eutrophication attributable to cereal production in Norway. Agricultural Systems, 127: 9–18. doi:  10.1016/j.agsy.2013.12.007
[9] Lal R, 2002. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems. Land Degradation & Development, 13(6): 469–478. doi:  10.1002/ldr.531
[10] Li C S, Frolking S, Frolking T A, 1992. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research Atmospheres, 97(D9): 9759–9776. doi:  10.1029/92JD00510
[11] Liu X Y, Zhao Y C, Shi X Z et al., 2017. Sensitivity and uncertainty analysis of CENTURY-modeled SOC dynamics in upland soils under different climate-soil-management conditions: a case study in China. Journal of Soils and Sediments, 17(1): 1–12. doi:  10.1007/s11368-016-1516-0
[12] Liu X Y, Zhao Y C, Shi X Z et al., 2019. Uncertainty in CENTURY-modelled changes in soil organic carbon stock in the uplands of Northeast China, 1980–2050. Nutrient Cycling in Agroecosystems, 113(1): 77–93. doi:  10.1007/s10705-018-9963-1
[13] Lugato E, Panagos P, Bampa F et al., 2014. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Global Change Biology, 20(1): 313–326. doi:  10.1111/gcb.12292
[14] Mao D H, He X Y, Wang Z M et al., 2019. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. Journal of Cleaner Production, 240: 117961. doi:  https://doi.org/10.1016/j.jclepro.2019.117961
[15] Necpalova M, Anex R P, Fienen M N et al., 2015. Understanding the DayCent model: calibration, sensitivity, and identifiability through inverse modeling. Environmental Modelling and Software, 66(apr.): 110–130. doi:  10.1016/j.envsoft.2014.12.011
[16] Ogle S M, Breidt F J, Easter M et al., 2010. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process–based model. Global Change Biology, 16(2): 810–822. doi:  10.1111/j.1365-2486.2009.01951.x
[17] Pan G X, Xu X X, Smith P et al., 2010. An increase in topsoil SOC stock of China's croplands between 1985 and 2006 revealed by soil monitoring. Agriculture Ecosystems & Environment, 136(1–2): 133–138. doi:  10.1016/j.agee.2009.12.011
[18] Parton W J, Schimel D S, Cole C V et al., 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51(5): 1173–1179. doi:  10.2136/sssaj1987.03615995005100050015x
[19] Qin Falyu, Shi Xuezheng, Xu Shengxiang et al., 2016. Zonal differences in correlation patterns between soil organic carbon and climate factors at multi-extent. Chinese Geographical Science, 26(5): 670–678. doi:  10.1007/s11769-015-0736-3
[20] Stewart C E, Paustian K, Conant R T et al., 2007. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 86(1): 19–31. doi:  10.1007/s10533-007-9140-0
[21] Stewart C E, Paustian K, Conant R T et al., 2008. Soil carbon saturation: evaluation and corroboration by long-term incubations. Soil Biology and Biochemistry, 40(7): 1741–1750. doi:  10.1016/j.soilbio.2008.02.014
[22] Sun W J, Huang Y, Zhang W et al., 2010. Carbon sequestration and its potential in agricultural soils of China. Global Biogeochemical Cycles, 24(3): GB3001. doi:  10.1029/2009GB003484
[23] Tang X L, Zhao X, Bai Y F et al., 2018. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences, 115(16): 4021–4026. doi:  10.1073/pnas.1700291115
[24] Tornquist C G, Gassman P W, Mielniczuk J et al., 2009. Spatially explicit simulations of soil C dynamics in Southern Brazil: integrating century and GIS with i_Century. Geoderma, 150(3–4): 404–414. doi:  10.1016/j.geoderma.2009.03.001
[25] WANG Dandan, LI Xinhui, SHI Xuezheng et al., 2017. Influence of Climate on Soil Organic Carbon in Chinese Paddy Soils. Chinese Geographical Science, 27(3): 351–361. doi:  10.1007/s11769-017-0868-8
[26] Wang S H, Shi X Z, Zhao Y C et al., 2011. Regional simulation of soil organic carbon dynamics for dry farmland in east China by cou-pling a 1:500 000 soil database with the Century model. Pedosphere, 21(3): 277–287. doi:  10.1016/S1002-0160(11)60128-8
[27] Xie E Z, Zhang Y X, Huang B et al., 2021. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981-2011. Soil & Tillage Research, : 205. doi:  10.1016/j.still.2020.104763
[28] Xie Z B, Zhu J G, Liu G et al., 2007. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 13(9): 1989–2007. doi:  10.1111/j.1365-2486.2007.01409.x
[29] Yu Dongsheng, Panyue, Zhang Haidong et al., 2017. Equality testing for soil grid unit resolutions to polygon unit scales with DNDC modeling of regional SOC pools. Chinese Geographical Science, 27(4): 552–568. doi:  10.1007/s11769-017-0887-5
[30] Yu Y Q, Huang Y, Zhang W, 2012. Modeling soil organic carbon change in croplands of China, 1980–2009. Global and Planetary Change, 82–83: 115–128. doi:  10.1016/j.gloplacha.2011.12.005
[31] Yu Y Q, Huang Y, Zhang W, 2013. Projected changes in soil organic carbon stocks of China’s croplands under different agricultural managements, 2011–2050. Agriculture Ecosystems & Environment, 178: 109–120. doi:  10.1016/j.agee.2013.06.008
[32] Zhang L M, Wang G X, Zheng Q F et al., 2017. Quantifying the impacts of agricultural management and climate change on soil organic carbon changes in the uplands of Eastern China. Soil & Tillage Research, 174: 81–91. doi:  10.1016/j.still.2017.06.005
[33] Zhao C X, Shan L, Deng X P et al., 2004. Current situation and counter-measures of the development of dryland farming in China. Trans. CSAE, 20(4): 280–285. doi:  10.1300/J064v24n01_09
[34] Zhao Y C, Wang M Y, Hu S J et al., 2018. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proceedings of the National Academy of Sciences, 115(16): 4045. doi:  10.1073/pnas.1700292114
[35] Zhou Y, Hartemink A E, Shi Z et al., 2019. Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment, 647: 1230–1238. doi:  10.1016/j.scitotenv.2018.08.016