[1] Amani M, Mobasheri M R, Mahdavi S, 2018. Contemporaneous estimation of Leaf Area Index and soil moisture using the red-NIR spectral space. Remote Sensing Letters, 9(3):264-273. doi: 10.1080/2150704X.2017.1415472
[2] Anyamba A, Tucker C J, 2005. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981-2003. Journal of Arid Environments, 63(3):596-614. doi: 10.1016/j.jaridenv.2005.03.007
[3] Bandyopadhyay S, Kanji S, Wang L M, 2012. The impact of rainfall and temperature variation on diarrheal prevalence in Sub-Saharan Africa. Applied Geography, 33:63-72. doi: 10.1016/j.apgeog.2011.07.017
[4] Bi Lige, Yin Shan, Bao Yulong et al., 2011. Research on the drought during the vegetation growth period of Inner Mongolia based on TVDI. Journal of Anhui Agricultural Sciences, 39(10):5945-5948. (in Chinese)
[5] Cao X M, Feng Y M, Wang J L, 2016. An improvement of the Ts-NDVI space drought monitoring method and its applications in the Mongolian Plateau with MODIS, 2000-2012. Arabian Journal of Geosciences, 9:433. doi: 10.1007/s12517-016-2451-5
[6] Cao X M, Feng Y M, Wang J L, 2017. Remote sensing monitoring the spatio-temporal changes of aridification in the Mongolian Plateau based on the general Ts-NDVI space, 1981-2012. Journal of Earth System Science, 126(4):58. doi: 10.1007/s12040-017-0835-x
[7] Carlson T, 2007. An overview of the ‘Triangle Method’ for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 7(8):1612-1629. doi: 10.3390/s7081612
[8] Cihlar J, Ly H, Li Z Q et al., 1997. Multitemporal, Multichannel AVHRR data sets for land Biosphere Studies-Artifacts and corrections. Remote Sensing of Environment, 60(1):35-57. doi: 10.1016/S0034-4257(96)00137-X
[9] Dagvadorj D, Natsagdorj L, Dorjpurev J et al., 2009. Mongolia Assessment Report on Climate Change 2009. Environmental Policy Collection, 27-34.
[10] Dogan S, Berkta A, Singh V P, 2012. Comparison of multi-monthly rainfall-based drought severity indices, with application to semi-arid Konya closed basin, Turkey. Journal of Hydrology, 470-471:255-268. doi: 10.1016/j.jhydrol.2012.09.003
[11] Du L T, Tian Q J, Yu T et al., 2013. A comprehensive drought monitoring method integrating MODIS and TRMM data. International Journal of Applied Earth Observation and Geoinformation, 23:245-253. doi: 10.1016/j.jag.2012.09.010
[12] Frey C M, Kuenzer C, Dech S, 2012. Quantitative comparison of the operational NOAA-AVHRR LST product of DLR and the MODIS LST product V005. International Journal of Remote Sensing, 33(22):7165-7183. doi: 10.1080/01431161.2012.699693
[13] Gao Z Q, Gao W, Chang N B, 2011. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. International Journal of Applied Earth Observation and Geoinformation, 13(3):495-503. doi: 10.1016/j.jag.2010.10.005
[14] Goetz S J, 1997. Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing, 18(1):71-94. doi: 10.1080/014311697219286
[15] Holben B N, 1986. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 7(11):1417-1434. doi:10.1080/014311686 08948945
[16] Jiang L G, Yao Z J, Huang H Q, 2016. Climate variability and change on the Mongolian Plateau:historical variation and future predictions. Climate Research, 67(1):1-14. doi: 10.3354/cr01347
[17] Klisch A, Atzberger C, 2016. Operational drought monitoring in Kenya using MODIS NDVI time series. Remote Sensing, 8(4):267. doi: 10.3390/rs8040267
[18] Kogan F N, 1995. Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15(11):91-100. doi: 10.1016/0273-1177(95)00079-T
[19] Li G, Wang J L, Wang Y J et al., 2019. Estimation of Grassland Production in Central and Eastern Mongolia from 2006 to 2015 via Remote Sensing. Journal of Resources and Ecology, 10(6):676-684.
[20] Li Xinzhou, Liu Xiaodong, 2012. A modeling study on drought trend in the Sino-Mongolian arid and semiarid regions in the 21st century. Arid Zone Research, 29(2):262-272. (in Chinese)
[21] Liu Huizhi, Wang Baomn, Fu Congbin, 2008. Relationships between surface albedo, soil thermal parameters and soil moisture in the semi-arid area of Tongyu, Northeastern China. Advances in Atmospheric Sciences, 25(5):757-764. doi: 10.1007/s00376-008-0757-2
[22] Liu Shulin, Kang Wenping, Wang Tao, 2016. Drought variability in Inner Mongolia of northern China during 1960-2013 based on standardized precipitation evapotranspiration index. Environmental Earth Sciences, 75(2):145. doi: 10.1007/s12665-015-4996-0
[23] Liu Y L, Zhuang Q L, Chen M et al., 2013. Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century. Global & Planetary Change, 108:85-99. doi: 10.1016/j.gloplacha.2013.06.008
[24] Lu C Q, Tian H Q, Zhang J et al., 2019. Severe long-lasting drought accelerated carbon depletion in the Mongolian Plateau. Geophysical Research Letters, 46(10):5303-5312. doi: 10.1029/2018GL081418
[25] Na T Y, 2014. Overview of application of remote sensing on drought monitoring in Inner Mongolia. Advanced Materials Research, 955-959:3735-3739. doi:10.4028/www.scientific. net/AMR.955-959.3735
[26] Nakano T, Bat-Oyun T, Shinoda M, 2020. Responses of palatable plants to climate and grazing in semi-arid grasslands of Mongolia. Global Ecology and Conservation, (24):e01231. doi: 10.1016/j.gecco.2020.e01231
[27] Nie Juan, Deng Lei, Hao Xianglei et al., 2018. Application of GF-4 satellite in drought remote sensing monitoring:a case study of Southeastern Inner Mongolia. Journal of Remote Sensing, 22(3):400-407. (in Chinese)
[28] Price J C, 1990. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Transactions on Geoscience & Remote Sensing, 28(5):940-948. doi: 10.1109/36.58983
[29] Quiring S M, Ganesh S, 2010. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agricultural & Forest Meteorology, 150(3):330-339. doi: 10.1016/j.agrformet.2009.11.015
[30] Rahimzadeh-Bajgiran P, Omasa K, Shimizu Y, 2012. Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS Journal of Photogrammetry & Remote Sensing, 68:1-12. doi: 10.1016/j.isprsjprs.2011.10.009
[31] Rahimzadeh-Bajgiran P, Berg A A, Champagne C et al., 2013. Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS Journal of Photogrammetry & Remote Sensing, 83:94-103. doi: 10.1016/j.isprsjprs.2013.06.004
[32] Rajpoot P S, Kumar A, 2019. Impact assessment of meteorological drought on rainfed agriculture using drought index and NDVI modeling:a case study of Tikamgarh district, M. P., India. Applied Geomatics, 11(1):15-23. doi: 10.1007/s12518-018-0230-6
[33] Sachula, Liu Guixiang, Bao Gang et al., 2012. The spatial and temporal changes of snow cover of the Mongolian Plateau in Recent 10 years. Journal of Inner Mongolia Normal University (Natural Science Edition), 41(5):531-536. (in Chinese)
[34] Sandholt I, Rasmussen K, Andersen J, 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environ, 79(2-3):213-224. doi: 10.1016/S0034-4257(01)00274-7
[35] Shi Chong, Liu Xiaodong, 2012. Continent drought characteristics over the Eastern Hemisphere from 1947 to 2006:analyses based on the SPEI dataset. Journal of Desert Research, 32(6):1691-1701. (in Chinese)
[36] Tian Hui, Wang Chenghai, Wen Jun et al., 2012. Soil moisture estimation over an arid environment in Mongolia from passive microwave remote sensing based on a simplified parameterization method. Chinese Journal of Geophysics, 55(2):415-427. (in Chinese)
[37] Tong S Q, Quan L, Zhang J Q et al., 2018. Spatiotemporal drought variability on the Mongolian Plateau from 1980-2014 based on the SPE I-PM, intensity analysis and Hurst exponent. Science of the Total Environment, 615:1557-1565. doi: 10.1016/j.scitotenv.2017.09.121
[38] Vicente-Serrano S M, Cuadrat-Prats J M, Romo A, 2006. Aridity influence on vegetation patterns in the middle Ebro Valley (Spain):evaluation by means of AVHRR images and climate interpolation techniques. Journal of Arid Environments, 66(2):353-375. doi: 10.1016/j.jaridenv.2005.10.021
[39] Wang J L, Cheng K, Liu Q et al., 2019. Land cover patterns in Mongolia and their spatiotemporal changes from 1990 to 2010. Arabian Journal of Geosciences, 12:778. doi: 10.1007/s12517-019-4893-z
[40] Wang J L, Wei H S, Cheng K et al., 2020. Spatio-temporal pattern of land degradation from 1990 to 2015 in Mongolia. Environmental Development, 34:100497. doi: 10.1016/j.envdev.2020.100497
[41] Wang Jinsong, Chen Fafu, Zhang Qiang et al., 2008a. Temperature variations in arid and semi-arid areas in middle part of Asia during the last 100 years. Plateau Meteorology, 27(5):1035-1045. (in Chinese)
[42] Wang Ling, Zhen Lin, Liu Xuelin et al., 2008b. Comparative studies on climate changes and influencing factors in central Mongolian Plateau Region. Geographical Research, 27(1):171-180. (in Chinese)
[43] Wang W, Feng Z D, 2013. Holocene moisture evolution across the Mongolian Plateau and its surrounding areas:a synthesis of climatic records. Earth-Science Reviews, 122:38-57. doi: 10.1016/j.earscirev.2013.03.005
[44] Wei H S, Wang J L, Han B M, 2020. Desertification information extraction along the China-Mongolia Railway supported by multisource feature space and geographical zoning modeling. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13:392-402. doi: 10.1109/JSTARS.2019.2962830
[45] Wendurina, Bao Yuhai, Yin Shan et al., 2017. The spatial and temporal variation of vegetation cover in Mongolian Plateau and its response to surface hydrothermal factors from 2000 through 2014. Journal of Glaciology and Geocryology, 39(6):1345-1356. (in Chinese)
[46] Yagci A L, Di L P, Deng M X, 2015. The effect of corn-soybean rotation on the NDVI-based drought indicators:a case study in Iowa, USA, using Vegetation Condition Index. GIScience & Remote Sensing, 52(3):290-314. doi: 10.1080/15481603.2015.1038427
[47] Yang Xiuhai, Zhuo Ga, Luo Bu, 2011. On MODIS data based drought monitoring in Northwest China. Pratacultural Science, 28(8):1420-1426. (in Chinese)
[48] Yu H Y, Luedeling E, Xu J C, 2010. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107(51):22151-22156. doi: 10.1073/pnas.1012490107
[49] Yuhas A N, Scuderi L A, 2009. MODIS-derived NDVI characterisation of drought-induced evergreen Dieoff in Western North America. Geographical Research, 47(1):34-45. doi: 10.1111/j.1745-5871.2008.00557.x
[50] Zhou Lei, Wu Jianjun, Zhang Jie, 2015. Remote sensing-based drought monitoring approach and research progress. Scientia Geographica Sinica, 35(5):630-636. (in Chinese)