[1] Aggelopoulou K, Gemtos T, 2011. Delineation of management zones in an apple orchard: correlations between yield and soil properties. In: Proceedings of the International Conference on Informationand Communication Technologiesfor Sustainable Agri-production and Environment. Skiathos: HAICTA, 443– 450.
[2] Azmathullah H M, Deo M, Deolalikar P B, 2005. Neural networks for estimation of scour downstream of a ski-jump bucket. Journal of Hydraulic Engineering, 131(10): 898–908. doi:  10.1061/(ASCE)0733-9429(2005)131:10(898)
[3] Bateni S M, Borghei S M, Jeng D S, 2007. Neural network and neuro-fuzzy assessments for scour depth around bridge piers. Engineering Applications of Artificial Intelligence, 20(3):401–414. doi:  10.1016/j.engappai.2006.06.012
[4] Box G E P, Cox D R, 1964. An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2): 211–252.
[5] Cambardella C A, Moorman T B, Parkin T B et al., 1994. Field-scale variability of soil properties in central iowa soils. Soil Science Society of America Journal, 58(5): 1501–1511. doi:  10.2136/sssaj1994.03615995005800050033x
[6] Cressie N, 1993. Statistics for Spatial Data. New York: WileyInterscience, 15: 105–209.
[7] Das D K, Bandyopadhyay S, Chakraborty D et al., 2009. Application of modern techniques in characterization and management of soil and water resources. Journal of the Indian Society of Soil Science, 57(4): 445.
[8] Eldeiry A A, Garcia L A, 2010. Comparison of ordinary kriging, regression kriging, and cokriging techniques to estimate soil salinity using landsat images. Journal of Irrigation and Drainage Engineering, 136(6): 355–364. doi: 10.1061/(ASCE) IR.1943-4774.0000208
[9] Emamgholizadeh S, Bahman K, Bateni S M et al., 2016. Estimation of soil dispersivity using soft computing approaches. Neural Computing and Applications, 1–10. doi: 10.1007/s 00521-016-2320-x
[10] Emamgholizadeh S, Bateni S M, Jeng D-S, 2013. Artificial intelligence-based estimation of flushing half-cone geometry. Engineering Applications of Artificial Intelligence, 26(10):2551–2558. doi:  10.1016/j.engappai.2013.05.014
[11] Emamgholizadeh S, Parsaeian M, Baradaran M, 2015. Seed yield prediction of sesame using artificial neural network. European Journal of Agronomy, 68: 89–96. doi: 10.1016/j.eja.2015. 04.010
[12] Eslami M A, Shahsavani S, Roshani G A et al., 2016. Mapping soil fertility of the peyvand cooperative lands by arcgis. In:Water and Soil. Shahrood University of Technology, 120.
[13] Fotheringham A S, Brunsdon C, Charlton M, 2003. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. London: John Wiley & Sons.
[14] George D, 2011. Spss for windows step by step: a simple study guide and reference, 17.0 update, 10/e. Pearson Education India.
[15] Ghorbani H, Kashi H, Hafezi Moghadas N et al., 2015. Estimation of soil cation exchange capacity using multiple regression, artificial neural networks, and adaptive neuro-fuzzy inference system models in golestan province, iran. Communications in Soil Science and Plant Analysis, 46(6): 763–780. doi: 10.1080/ 00103624.2015.1006367
[16] Goovaerts P, 1998. Ordinary cokriging revisited. Mathematical Geology, 30(1): 21–42. doi:  10.1023/A:1021757104135
[17] Ivajnši? D, Kaligari? M, ?iberna I, 2014. Geographically weighted regression of the urban heat island of a small city. Applied Geography, 53: 341–353. doi: 10.1016/j.apgeog.2014. 07.001
[18] Kashi H, Emamgholizadeh S, Ghorbani H, 2014. Estimation of soil infiltration and cation exchange capacity based on multiple regression, ANN (RBF, MLP), and ANFIS models. Communications in Soil Science and Plant Analysis, 45(9):1195–1213. doi:  10.1080/00103624.2013.874029
[19] Klute A, Dirksen C, 1986. Hydraulic conductivity and diffusivity:laboratory methods. In: Klute A. Methods of Soil Analysis:Part 1—Physical and Mineralogical Methods. 2nd ed. Madison: American Society of Agronomy, 687–734.
[20] Kumar S, Lal R, Liu D S, 2012. A geographically weighted regression kriging approach for mapping soil organic carbon stock. Geoderma, 189–190: 627–634. doi: 10.1016/j.geoderma. 2012.05.022
[21] Li Y, Li C K, Tao J-J et al., 2011. Study on spatial distribution of soil heavy metals in huizhou city based on BP-ANN modeling and GIS. Procedia Environmental Sciences, 10: 1953–1960. doi:  10.1016/j.proenv.2011.09.306
[22] Liu F, Zhang G L, Sun Y J et al., 2013. Mapping the three- dimensional distribution of soil organic matter across a subtropical hilly landscape. Soil Science Society of America Journal, 77(4): 1241–1253. doi:  10.2136/sssaj2012.0317
[23] Malinova T, Guo Z X, 2004. Artificial neural network modelling of hydrogen storage properties of Mg-based alloys. Materials Science and Engineering: A, 365(1–2): 219–227. doi: 10.1016/ j.msea.2003.09.031
[24] Malvi U R, 2011. Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka Journal of Agricultural Sciences, 24(1): 106–109.
[25] McCulloch W S, Pitts W, 1943. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4): 115–133. doi:  10.1007/BF02478259
[26] McKenzie N J, Ryan P J, 1999. Spatial prediction of soil properties using environmental correlation. Geoderma, 89(1–2):67–94. doi:  10.1016/S0016-7061(98)00137-2
[27] Mishra U, Lal R, Liu D S et al., 2010. Predicting the spatial variation of the soil organic carbon pool at a regional scale. Soil Science Society of America Journal, 74(3): 906–914. doi: 10.2136/sssaj2009.0158
[28] Murayama Y, 2012. Progress in Geospatial Analysis. Japan:Springer Science & Business Media.
[29] Nath T N, 2014. Status of macronutrients (N, P and K) in some selected tea growing soils of sivasagar district of Assam, India. International Research Journal of Chemistry, 7.
[30] Odeh I O A, McBratney A B, Chittleborough D J, 1995. Further results on prediction of soil properties from terrain attributes:Heterotopic cokriging and regression-kriging. Geoderma, 67(3–4): 215–226. doi:  10.1016/0016-7061(95)00007-B
[31] Olsen S R, 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Washington: United States Department of Agriculture.
[32] Reeves D W, 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil and Tillage Research, 43(1–2): 131–167. doi: 10.1016/S0167-1987(97) 00038-X
[33] Rincón-Ruiz A, Pascual U, Flantua S, 2013. Examining spatially varying relationships between coca crops and associated factors in colombia, using geographically weight regression. Applied Geography, 37: 23–33. doi: 10.1016/j.apgeog.2012. 10.009
[34] Robinson T P, Metternicht G, 2006. Testing the performance of spatial interpolation techniques for mapping soil properties. Computers and Electronics in Agriculture, 50(2): 97–108. doi: 10.1016/j.compag.2005.07.003
[35] Saikh H, Varadachari C, Ghosh K, 1998. Changes in carbon, nitrogen and phosphorus levels due to deforestation and cultivation: A case study in simlipal national park, india. Plant and Soil, 198(2): 137–145. doi:  10.1023/A:1004391615003
[36] Singh K P, Basant A, Malik A et al., 2009. Artificial neural network modeling of the river water quality—a case study. Ecological Modelling, 220(6): 888–895. doi: 10.1016/j.ecolmodel. 2009.01.004
[37] Snyder P J, Redmond M P, 1995. Understanding neural networks. Computer explorations. Volumes 1 and 2. M. Caudill and C. Butler. Cambridge: MIT Press, 1992. Brain and Cognition, 27(1): 128–133. doi:  10.1006/brcg.1995.1012
[38] Pang S, Li T X, Wang Y D et al., 2009. Spatial interpolation and sample size optimization for soil copper (Cu) investigation in cropland soil at county scale using cokriging. Agricultural Sciences in China, 8(11): 1369–1377. doi:  10.1016/S1671-2927(08)60349-1
[39] Sun W, Minasny B, McBratney A, 2012. Analysis and prediction of soil properties using local regression-kriging. Geoderma, 171–172: 16–23. doi:  10.1016/j.geoderma.2011.02.010
[40] Wackernagel H, 2003. Multivariate Geostatistics: an Introduction with Applications. Berlin Heidelberg: Springer Verlag.
[41] Walkley A, Black I A, 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1): 29–38. doi:  10.1097/00010694-193401000-00003
[42] Wang K, Zhang C R, Li W D, 2013. Predictive mapping of soil total nitrogen at a regional scale: a comparison between geographically weighted regression and cokriging. Applied Geography, 42: 73–85. doi:  10.1016/j.apgeog.2013.04.002
[43] Western A W, Zhou S-L, Grayson R B et al., 2004. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. Journal of Hydrology, 286(1–4): 113–134. doi: 10.1016/j.jhydrol.2003.09. 014
[44] Zhang C S, Tang Y, Xu X L et al., 2011. Towards spatial geochemical modelling: use of geographically weighted regression for mapping soil organic carbon contents in ireland. Applied Geochemistry, 26(7): 1239–1248. doi: 10.1016/j.apgeochem. 2011.04.014