[1] Bach L H, Grytnes J A, Halvorsen R et al., 2010. Tree influence on soil microbial community structure. Soil Biology and Bio-chemistry, 42(11):1934-1943. doi:10.1016/j.soilbio.2010. 07.002
[2] Bai Junhong. 2003. Biogeochemical processes of nitrogen in marsh soils from Xianghai wetland, China. Changchun, China:PhD Thesis, Northeast Institute of Geography and Agroecolo-gy, Chinese Academy of Sciences. (in Chinese)
[3] Bai J H, Yang H O, Deng W et al., 2005. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma, 124(1-2):181-192. doi: 10.1016/j.gE.ovataderma.2004.04.012
[4] Balasooriya W K, Denef K, Peters J et al., 2008. Vegetation composition and soil microbial community structural changes along a wetland hydrological gradient. Hydrology and Earth System Sciences, 12(1):277-291. doi: 10.5194/hess-12-277-2008
[5] Bardgett R D, Shine A, 1999. Linkages between plant litter diver-sity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry, 31(2):317-321. doi: 10.1016/S0038-0717(98)00121-7
[6] Bruland G L, Richardson C J, 2004. Wetland soils:Hydrologic gradients and topsoil additions affect soil properties of virgin-iacerated wetlands. Soil Science Society of America Journal, 68(6):2069-2077. doi: 10.2136/sssaj2004.2069
[7] Colin W B, Shinichi A, Francisco C et al., 2015. Plant nitrogen uptake drives rhizosphere bacterial community assembly during plant growth. Soil Biology and Biochemistry, 85:1701-82. doi:10. 1016/j.soilbio.2015.03.006
[8] Djukic I, Zehetner F, Mentler A et al., 2010. Microbial community composition and activity in different Alpine vegetation zones. Soil Biology and Biochemistry, 42(2):155-161. doi:10.1016/j.soilbio. 2009.10.006
[9] Frostegard A, Tunlid A, Baath E, 1991. Microbial biomass meas-ured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods, 14(3):151-163. doi:10. 1016/0167-7012(91)90018-L
[10] Gutknecht J L M, Goodman R M, Balser T C, 2006. Linking soil processes and microbial ecology in freshwater wetland eco-systems. Plant Soil, 289(1-2):17-34. doi: 10.1007/s11104-006-9105-4
[11] Han X M, Wang R Q, Liu J et al., 2007. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China. Journal of Environmental Sciences, 19(10):1228-1234. doi:10.1016/S 1001-0742(07)60200-9.
[12] Houlahan J E, Keddy P A, Makkay K et al., 2006. The effects of adjacent land use on wetland species richness and community composition. Wetlands, 26(1):79-96. doi:10.1672/0277-5212 (2006)[97:JE.OVATAALU]2.0.CO;2
[13] Ingham E R, Wilson M V, 1999. The mycorrhizal colonization of six wetland plant species at sites differing in land use history. Mycorrhiza, 9(4):233-235. doi: 10.1007/s005720050272
[14] Jaatinen K, Fritze H, Laine J et al., 2007. Effects of short-and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland. Global Change Biology, 13(2):491-510. doi:10.111/j.1365-2486. 2006.01312.x
[15] Jaatinen K, Tuittila E S, Laine J et al., 2005. Methane-oxidizing bacteria (MOB) in a Finnish raised mire complex:Effects of site fertility and drainage. Microbial Ecology, 50(3):429-439. doi: 10.1007/s00248-004-0219-z
[16] Jackson M B, Armstrong W, 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology, 1(3):274-287. doi: 10.1111/j.1438-8677.1999.tb00253.x
[17] James F D, Nicolas C, Hélène F et al., 2004. Sensing and signal-ling during plant flooding. Plant Physiology and Biochemistry, 42(4):273-282. doi: 10.1016/j.plaphy.2004.02.003
[18] Jing J Y, Martijn B T, Van der Putten W H, 2015. Interspecific competition of early successional plant species in ex-arable fields as influenced by plant-soil feedback. Basic and Applied and Ecology, 16(2):112-119. doi: 10.1016/j.baae.2015.01.001
[19] Kardol P, Bezemer T M, Van der Putten W H, 2006. Temporal variation in plant-soil feedback controls succession. Ecology Letters, 9(9):1080-1088. doi:10.1111/j.1461-0248.2006. 00953.x
[20] Kardol P, De Deyn G B, Laliberte E et al., 2013. Biotic plant-soil feedbacks across temporal scales. Journal of Ecology, 101(2):309-315. doi: 10.1111/1365-2745.12046
[21] Knops J M H, Bradley K L, Wedin D A, 2002. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 5(3):454-466. doi: 10.1111/j.1461-0248.2008.01209.x
[22] Kulmatiski A, Beard K H, Stevens J R et al., 2008. Plant-soil feedbacks:a meta-analytical review. Ecology letters, 11(9):980-912. doi: 10.1111/j.1461-0248.2008.01209.x
[23] Lanchlan H, Fraser Tara E, Miletti, 2008. Effects of minor water depth treatments on competitive effect and response of eight wetland plants. Plant Ecology, 195(1):33-43. doi:10.1007/s 11258-007-9296-7
[24] Liu Guangsong, 1996. Analysis of Soil Physical and Chemical Properties and Description of Soil Profiles. Bejing:Chinese Standard Press.
[25] Lou Y Y, Wang G P, Lu X G et al., 2013. Zonation of plant cover and environmental factors in wetlands of the Sanjiang Plain, northeast China. Nordic Journal of Botany, 31(6):748-756. doi: 10.1111/j.1756-1051.2013.01721.x
[26] Massaccesi L, Bardgett R D, Agnelli A et al., 2015. Impact of plant species evenness, dominant species identity and spatial arrangement on the structure and functioning of soil microbial communities in a model grassland. Oecologia, 177(3):747-759. doi: 10.1007/s00442-014-3135-z
[27] Miller S P, Bever J D, 1999. Distribution of arbuscular mycorrhi-zal fungi in stands of the wetland grass Panicum hemitomon along a wide hydrologic gradient. Oecologia, 119(4):586-592. doi: 10.1007/s004420050823
[28] Mitchell R J, Hester A J, Campbell C D et al., 2012. Explaining the variation in the soil microbial community:do vegetation composition and soil chemistry explain the same or different parts of the microbial variation? Plant Soil, 351(1-2):355-362. doi: 10.1007/s11104-011-0968-7
[29] Moche M, Gutknecht J, Schulz E et al., 2015. Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils. Soil Biology and Biochemistry, 90:169-178. doi: 10.1016/j.soilbio.2015.07.006
[30] Reddy K R, Patrick J, 1975. Effect of alternate aerobic and an-aerobic conditions on redox potential, organic matter decom-position and nitrogen loss in a flooded soil. Soil Biology and Biochemistry, 7(2):87-94. doi: 10.1016/0038-0717(75)90004-8
[31] Reynolds H L, Packer A, Bever J D et al., 2003.Grassroots exol-ogy:plant-microbe-soil interactions as drivers of plant com-munity structure and dynamics. Ecology Letters, 84(9):2281-2291. doi: http://dx.doi.org/10.1890/02-0298
[32] Rickerl D H, Sancho S O, Anath S, 1994.Vesicular-arbuscular endomycorrhizal colonization of wetland plants. Journal of Environmental Quality, 23(5):913-916. doi:10.2134/jeq1994. 00472425002300050010x
[33] Schlatter D C, Bakker M G, Bradeen J M et al., 2015. Plant community richness and microbial interactions structure bac-terial community in soil. Ecology, 96(1):134-142. doi:10. 1890/13-1648.1
[34] Van Eck W H J M, Van De Steeg H M, Blom C P W P M et al., 2004. Is tolerance to summer flooding correlated with distri-bution patterns in river floodplains? A comparative study of 20 terrestrial grassland species. Okios, 107(2):393-405. doi: 10.1111/j.0030-1299.2004.13083.x
[35] Wang X, Van Nostrand J D, Deng Y et al., 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Micro-biology Ecology, 91(12):1-9. doi: http://dx.doi.org/10.1093/femsec/fiv133
[36] Wardle D A, Bardgett R D, Klironomos J N et al., 2004. Ecolog-ical linkages between aboveground and belowground biota. Science, 34(5677):1620-1633. doi: 10.1126/science.1094875
[37] Weand M P, Arthur M A, Lovett G M et al., 2010. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities. Soil Biology and Bio-chemistry, 42(12):2161-2173. doi:10.1016/j.soilbio.2010. 08.012
[38] Wyatt H H, Curtis J R, Rytas V et al., 2008. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Science of the United States of America, 105(46):17842-17847. doi:10. 1073/pnas.0808254105
[39] Yang Guisheng, Song Changchun, Wang Li et al., 2010. Influence of water level gradient on marsh soil microbial activity of Cala-magrostis angustifolia. Environment Science, 31:444-449. (in Chinese)
[40] Zhao J, Wang X L, Shao Y H et al., 2011. Effects of vegetation removal on soil properties and decomposer organisms. Soil Biology and Biochemistry, 43(5):954-960. doi:10.1016/j. soilbio.2011.01.010
[41] Zedler J B, Kercher S, 2005. Wetland resources:status, trends, ecosystem services, and restorability. Annual Review of Envi-ronment and Resources, 30:39-74. doi:10.1146/annurev. energy.30.050504.144248