[1] Berendse F, 1994. Competition between plant populations at low and high nutrient supplies. Oikos, 71(2):253-260. doi: 10.2307/3546273
[2] Bobbink R, Hicks K, Galloway J et al., 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity:a synthesis. Ecological Applications, 20(1):30-59. doi:10. 1890/08-1140.1
[3] Bobbink R, Hornung M, Roelofs J G M, 1998. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86(5):717-738. doi: 10.1046/j.1365-2745.1998.8650717.x
[4] Bowman W D, Garner J R, Holland K et al., 2006. Nitrogen crit-ical loads for alpine vegetation and terrestrial ecosystem re-sponse:are we there yet? Ecological Applications, 16(3):1183-1193. doi:10.1890/1051-0761(2006)016[1183:NCLFAV] 2.0.CO;2
[5] Bowman W D, Steltzer H, 1998. Positive feedbacks to anthropo-genic nitrogen deposition in Rocky Mountain alpine tundra. Ambio, 27(7):514-517.
[6] Bowman W D, Theodose T A, Schardt J C et al., 1993. Constraintsof nutrient availability on primary production in two alpinetundra communities. Ecology, 74(7):2085-2097. doi: 10.2307/1940854
[7] Bret-Harte M S, Garcia E A, Sacre V M et al., 2004. Plant and soil responses to neighbour removal and fertilization in Alaskan tussock tundra. Journal of Ecology, 92(4):635-647. doi: 10.1111/j.0022-0477.2004.00902.x
[8] Burns D A, 2003. Atmospheric nitrogen deposition in the Rocky Mountains of Colorado and southern Wyoming-a review and new analysis of past study results. Atmospheric Environment, 37(7):921-932. doi: 10.1016/S1352-2310(02)00993-7
[9] Cai H, Xie S, 2007. Estimation of vehicular emission inventories in China from 1980 to 2005. Atmospheric Environment, 41(39):8963-8979. doi: 10.1016/j.atmosenv.2007.08.019
[10] Chen X Y, Mulder J, Wang, Y H et al., 2004. Atmospheric depo-sition, mineralization and leaching of nitrogen in subtropical forested catchments, South China. Environmental Geochemistry and Health, 26(2-3):179-186. doi:10.1023/B:EGAH. 0000039580.79321.1a
[11] Clark C M, Morefield P E, Gilliam F S et al., 2013. Estimated losses of plant biodiversity in the United States from historical N deposition (1985-2010). Ecology, 94(7):1441-1448. doi: 10.1890/12-2016.1
[12] Dise N B, Rothwell J J, Gauci V et al., 2009. Predicting dissolved inorganic nitrogen leaching in European forests using two in-dependent databases. Science of the Total Environment, 407(5):1798-1808. doi: 10.1016j.scitotenv.2008.11.003
[13] Dorrepaal E, Cornelissen J H C, Aerts R et al., 2005. Are growth forms consistent predictors of leaf litter quality and decom-posability across peatlands along a latitudinal gradient? Journal of Ecology, 93(4):817-828. doi:10.1111/j.1365-2745. 2005.01024.x
[14] Driscoll C T, Lawrence G B, Bulger A J et al., 2001. Acidic dep-osition in the northeastern United States:sources and inputs, ecosystem effects, and management strategies. Bioscience, 51(3):180-198. doi:10.1641/0006-3568(2001) 051[0180:ADITNU]2.0.C0;2
[15] Du E Z, Jiang Y, Fang J Y et al., 2014. Inorganic nitrogen depo-sition in China's forests:Status and characteristics. Atmospheric Environment, 98:474-482. doi: org/10.1016/j.atmosenv.2014.09.005
[16] Gallowy J N, Dentener F J, Capone D G et al., 2004. Nitrogen cycles:past, present and future. Biogeochemistry, 70(2):153-226. doi: jstor.org/stable/4151466
[17] Galloway J N, Townsend A R, Erisman J W et al., 2008. Trans-formation of the nitrogen cycle:recent trends, questions, and potential solutions. Science, 320(5878):889-892. doi: 10.1126/science.1136674
[18] Geiser L H, Neitlich P N, 2007. Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens. Environment Pollution, 145(1):203-218. doi: 10.1016/j.envpol.2006.03.024
[19] Gerdol R, Brancaleoni L, Marchesini R et al., 2002. Nutrient and carbon relations in subalpine dwarf shrubs after neighbor re-moval or fertilization in northern Italy. Oecologia, 130(3):476-783. doi: 10.1007/s00442-001-0823-2
[20] Gough L, Osenberg C W, Gross K L et al., 2000. Fertilization effects on species density and primary productivity in herba-ceous plant communities. Oikos, 89(3):428-439. doi:10. 1034/j.1600-0706.2000.890302.x
[21] Graglia E, Jonasson S, Michelsen A et al., 2001. Effects of envi-ronmental perturbations on abundance of subarctic plants after three, seven and ten years of treatment. Ecography, 24(1):5-12. doi: 10.1034/j.1600-0587.2001.240102.x
[22] Hurkuck M, Brümmer C, Mohr K et al., 2014. Determination of atmospheric nitrogen deposition to a semi-natural peat bog site in an intensively managed agricultural landscape. Atmospheric Environment, 97:296-309. doi:org/10.1016/j.atmosenv.2014. 08.034
[23] Jiang C M, Yu W T, Ma Q et al., 2013. Atmospheric organic nitrogen deposition:analysis of nation wide data and a case study in Northeast China. Environment Pollution, 182:430-436. doi: 10.1016/j.envpol.2013.08.003
[24] Jin Yinghua, Xu Jiawei, Liang Yu et al., 2013. Effects of volcanic interference on the vegetation distributionof Changbai Moun-tain. Scientia Geographica Sinica, 33(2):203-208. (in Chinese)
[25] Jin Yinghua, Xu Jiawei, Zong Shengwei et al., 2014. Experimental study on the effects of nitrogen deposition on the tundra vegetation of the Changbai Mountains. Scientia Geographica Sinica, 34(12):1526-1532. (in Chinese)
[26] Johnson D R, Ebert-May D, Webber P J et al., 2011. Forecasting alpine vegetation change using repeat sampling and a novel modeling approach. Ambio, 40(6):693-704. doi: 10.1007/s13280-011-0175-z
[27] Kool A, Heijmans M M P D, 2009. Dwarf shrubs are stronger competitors than graminoid species at high nutrient supply in peat bogs. Plant Ecology, 204(1):125-134. doi: 10.1007/s11258-009-9574-7
[28] Liu X J, Duan L, Mo J M et al., 2011. Nitrogen deposition and its ecological impact in China:an overview. Environmental Pollution, 159(10):2251-2264. doi:10.1016/j.envpol.2010. 08.002
[29] Liu X J, Zhang Y, Han W X et al., 2013. Enhanced nitrogen dep-osition over China. Nature, 494(7438):459-462. doi:10. 1038/nature11917
[30] Lu Xiankai, Mo Jiangming, Dong Shaofeng, 2008. Effects of nitrogen deposition on forest biodiversity. Acta Ecologica Sinica, 28(11):5532-5548. (in Chinese)
[31] MacDonald J A, DiseN B, Matzner E et al., 2002. Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Global Change Biology, 8:1028-1033. doi: 10.1046/j.1365-2486.2002.00532.x
[32] Magill A H, Aber J D, Currie W S et al., 2004. Ecosystem re-sponse to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Man-agement, 196(1):7-28. doi: 10.1016/j.foreco.2004.03.033
[33] Matson P, Lohse K A, Hall S J, 2002. The globalization of nitro-gen deposition:consequences for terrestrial ecosystems. Ambio, 31(2):113-119. doi: 10.1639/0044-7447(2002)031[0113:TGONDC]2.0.CO;2
[34] McDonough A M, Watmough S A, 2015. Impacts of nitrogen deposition on herbaceous ground flora and epiphytic foliose lichen species in southern Ontario hardwood forests. Envi-ronmental Pollution, 196:78-88. doi:org/10.1016/j.envpol. 2014.09.013
[35] Nordin A, Strengbom J, Witzell J et al., 2005. Nitrogen deposition and the biodiversity of boreal forests:implications for the critical load. Ambio, 34(1):20-24.
[36] Ren H Y, Xu Z W, Zhang W H et al., 2013. Linking ethylene to nitrogen-dependent leaf longevity of grassspecies in a temperate steppe. Annals of Botany, 112(9):1879-1885. doi:10. 1093/aob/mct223
[37] Stevens C J, Thompson K, Grime P J et al., 2010. Contribution of acidification and eutrophication to declines in species richness of calcifuges grasslands along a gradient of atmospheric ni-trogen deposition. Functional Ecology, 24(2):478-484. doi: 10.1111/j.1365-2435.2009.01663.x
[38] van Dobben H F, de Vries W, 2010. Relation between forest veg-etation, atmospheric deposition and site conditions and regional and European scales. Environmental Pollution, 158(3):921-933. doi:10.1016/j.envpol. 2009.09.015
[39] Verhoeven T, Beltman B, Dorland E et al., 2011. Differential effects of ammonium and nitrate deposition on fen phanerogams and bryophytes. Applied Vegetation Science, 14(2):149-157. doi:10.1111/j.1654-109 X. 2010.01113.x
[40] Wardle D A, Gundale M J, Jaderlund A et al., 2013. Decoupled long-term effects of nutrient enrichment on aboveground and belowground properties in subalpine tundra. Ecology, 94(4):904-919. doi: org/10.1890/12-0948.1
[41] Wright R F, Rasmussen L, 1998. Introduction to the NITREX and EXMAN projects. Forest Ecology and Management, 101:1-7. doi: 10.1016/S0378-1127(97)00120-5
[42] Yoshida L C, Allen E B, 2001. Response to ammonium and nitrate by a mycorrhizal annual invasive grassand native shrub in southern California. American Journal of Botany, 88(8):1430-1436. doi: 10.2307/3558450
[43] Zbieranowski A L, Aherne J, 2012. Spatial and temporal concen-tration of ambient atmospheric ammonia in southern Ontario, Canada. Atmospheric Environment, 62:441-450. doi: 10.1016/j.atmosenv.2012.08.041
[44] Zhan Xiaoyun, Yu Guirui, He Nianpeng et al., 2014. Nitrogen deposition and its spatial pattern in main forest ecosystems along north-south transect of eastern China. Chinese Geo-graphical Science, 24(2):137-146. doi: 10.1007/s11769-013-0650-5
[45] Zong Shengwei, Xu Jiawei, Wu Zhengfang, 2013. Investigation and mechanism analysis on the invasion of Deyeuxia angustifolia to tundra zone in western slope of Changbai Mountain. Journal of Mountain Science, 31(4):448-455. (in Chinese)