[1] Archibald S A, Kirton A, Van der Merwe M et al., 2009. Drivers of inter-annual variability in net ecosystem exchange in a semi-arid savanna ecosystem, South Africa. Biogeosciences, 6(2): 251-266. doi:  10.5194/bgd-5-3221-2008
[2] Aubinet M, Heinesch B, Longdoz B, 2002. Estimation of the carbon sequestration by a heterogeneous forest: night flux corrections, heterogeneity of the site and inter-annual variability. Global Change Biology, 8(11): 1053-1071. doi: 10.1046/j. 1365-2486.2002.00529.x
[3] Beer C, Reichstein M, Tomelleri E et al., 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329(5993): 834-838. doi: 10.1126/science. 1184984
[4] Berbigier P, Bonnefonda J M, Mellmann P, 2001. CO2 and water vapour fluxes for 2 years above Euroflux forest site. Agricultural and Forest Meteorology, 108(3): 183-197. doi: 10.1016/ S0168-1923(01)00240-4
[5] Betts A K, Zhao M, Dirmeyer P A et al., 2006. Comparison of ERA40 and NCEP/DOE near-surface data sets with other ISLSCP-II data sets. Journal of Geophysical Research: Atmospheres (1984-2012), 111(D22). doi: 10.1029/2006JD0 07174
[6] Blonquist J, Montzka S A, Yakir D et al., 2010. The potential of carbonyl sulfide as a tracer for gross primary productivity at flux tower sites. American Geophysical Union Fall Meeting, B21G-07. doi:  2010AGUFM.B21G.07B
[7] Carvalhais N, Reichstein M, Ciais P et al., 2010. Identification of vegetation and soil carbon pools out of equilibrium in a process model via eddy covariance and biometric constraints. Global Change Biology, 16(10): 2813-2829. doi: 10.1111/j. 1365-2486.2010.02173
[8] Chasmer L, Barr A, Hopkinson C et al., 2009. Scaling and assessment of GPP from MODIS using a combination of airborne lidar and eddy covariance measurements over jack pine forests. Remote Sensing of Environment, 113(1): 82-93. doi: 10.1016/ j.rse.2008.08.009
[9] Cohen W B, Maiersperger T K, Yang Z et al., 2003. Comparisons of land cover and LAI estimates derived from ETM+ and MODIS for four sites in North America: a quality assessment of 2000/2001 provisional MODIS products. Remote Sensing of Environment, 88(3): 233-255. doi:  10.1016/j.rse.2003.06.006
[10] Coops N C, Black T A, Jassal R P S et al., 2007. Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand. Remote Sensing of Environment, 107(3): 385-401. doi:  10.1016/j.rse.2006.09.010
[11] Desai A R, 2010. Climatic and phenological controls on coherent regional interannual variability of carbon dioxide flux in a heterogeneous landscape. Journal of Geophysical Research, 115: G00J02. doi:  10.1029/2010JG001423
[12] Don A, Rebmann C, Kolle O et al., 2009. Impact of afforestation-associated management changes on the carbon balance of grassland. Global Change Biology, 15(8): 1990-2002. doi: 10. 1111/j.1365-2486.2009.01873.x
[13] Dragoni D, Schmid H P, Wayson C A et al., 2011. Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-central Indiana, USA. Global Change Biology, 17(2): 886-897. doi: 10. 1111/ j.1365-2486.2010.02281.x
[14] Garbulsky M F, Peñuelas J, Papale D et al., 2008. Remote estimation of carbon dioxide uptake of terrestrial ecosystems. Global Change Biology, 14(12): 2860-2867. doi: 10. 1111/j. 1365-2486.2008.01684.x
[15] Granier A, Pilegaard K, Jensen N O, 2002. Similar net ecosystem exchange of beech stands located in France and Denmark. Agricultural and Forest Meteorology, 114(1): 75-82. doi: 10.1016/ S0168-1923(02)00137-5
[16] Grant R F, Hutyra L R, de Oliveira R C et al., 2009. Modeling the carbon balance of Amazonian rain forests: resolving ecological controls on net ecosystem productivity. Ecological Monographs, 79(3): 445-463. doi:  10.1890/08-0074.1
[17] Grünwald T, Bernhofer C, 2007. A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus B, 59(3): 387-396. doi: 10. 1111/j.1600-0889.2007.00259.x
[18] Heinsch F A, Zhao M, Running S W et al., 2006. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Transactions on Geoscience and Remote Sensing, 44(7): 1908-1925. doi:  10.1109/TGRS.2005.853936
[19] Houghton R A, Hackler J L, Lawrence K T, 1999. The US carbon budget: contributions from land-use change. Science, 285 (5427): 574-578. doi:  10.1126/science.285.5427.574
[20] Kanamitsu M, Ebisuzaki W, Woollen J et al., 2002. Ncep-Doe Amip-Ii Reanalysis (r-2). Bulletin of the American Meteorological Society, 83(11): 1631-1643. doi:  10.1175/BAMS-83-11-1631
[21] Kanniah K D, Beringer J, Hutley L B et al., 2009. Evaluation of collections 4 and 5 of the MODIS Gross Primary Productivity product and algorithm improvement at a tropical savanna site in northern Australia. Remote Sensing of Environment, 113(9): 1808-1822. doi:  10.1016/j.rse.2009.04.013
[22] Knohl A, Schulze E D, Kolle O et al., 2003. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agricultural and Forest Meteorology, 118(3): 151-167. doi:  10.1016/S0168-1923(03)00115-1
[23] Lagergren F, Eklundh L, Grelle A et al., 2005. Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant, Cell & Environment, 28(3): 412-423. doi:  10.1111/j.1365-3040.2004.01280.x
[24] Liang S, Wang K, Zhang X et al., 2010. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(3): 225-240. doi:  10.1109/JSTARS.2010.2048556
[25] Lloyd J, Taylor J, 1994. On the temperature dependence of soil respiration. Functional Ecology, 8(3): 315-323. doi: 10.2307/ 2389824
[26] Morales P, Sykes M T, Prentice I C et al., 2005. Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology, 11(12): 2211-2233. doi: 10.1111/j.1365-2486. 2005.01036.x
[27] Myneni R B, Ramakrishna R, Nemani R et al., 1997. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing, 35(6): 1380-1393. doi:  10.1109/36.649788
[28] Nightingale J M, Coops N C, Waring R H et al., 2007. Comparison of MODIS gross primary production estimates for forests across the USA with those generated by a simple process model, 3-PGS. Remote Sensing of Environment, 109(4): 500-509. doi:  10.1016/j.rse.2007.02.004
[29] Pan S, Tian H, Dangal S R et al., 2014. Modeling and monitoring terrestrial primary production in a changing global environment: toward a multiscale synthesis of observation and simulation. Advances in Meteorology, ID965936. doi: 10.1155/ 2014/ 965936
[30] Papale D, Valentini R, 2003. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biology, 9(4): 525-535. doi:  10.1046/j.1365-2486.2003.00609.x
[31] Propastin P, Ibrom A, Knohl A et al., 2012. Effects of canopy photosynthesis saturation on the estimation of gross primary productivity from MODIS data in a tropical forest. Remote Sensing of Environment, 121(6): 252-260. doi: 10.1016/j.rse. 2012.02.005
[32] Rahman A F, Sims D A, Cordova V D et al., 2005. Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophysical Research Letters, 32(19): L19404. doi:  10.1029/2005GL024127
[33] Reichstein M, Falge E, Baldocchi D et al., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11(9): 1424-1439. doi: 10.1111/j.1365-2486. 2005.001002.x
[34] Richardson A D, Anderson R S, Arain M A et al., 2012. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Global Change Biology, 18(2): 566-584. doi:  10.1111/j.1365-2486.2011.02562.x
[35] Running S W, Nemani R R, Heinsch F A et al., 2004. A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 54(6): 547-560. doi:  10.1641/0006-3568
[36] Saigusa N, Yamamoto S, Hirata R et al., 2008. Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agricultural and Forest Meteorology, 148(5): 700-713. doi: 10.1016/j. agrformet. 2007.12.006
[37] Seiler T J, Rasse D P, Li J H et al., 2009. Disturbance, rainfall and contrasting species responses mediated aboveground biomass response to 11 years of CO2 enrichment in a Florida scrub-oak ecosystem. Global Change Biology, 15(2): 356-367. doi:  10.1111/j.1365-2486.2008.01740.x
[38] Sjöström M, Zhao M, Archibald S et al., 2013. Evaluation of MODIS gross primary productivity for Africa using eddy covariance data. Remote Sensing of Environment, 131(4): 275-286. doi:  10.1016/j.rse.2012.12.023
[39] Tan B, Woodcock C E, Hu J et al., 2006. The impact of gridding artifacts on the local spatial properties of MODIS data: implications for validation, compositing, and band-to-band registration across resolutions. Remote Sensing of Environment, 105(2): 98-114. doi:  10.1016/j.rse.2006.06.008
[40] Tang X G, Wang Z M, Liu D W et al., 2012. Estimating the net ecosystem exchange for the major forests in the northern United States by integrating MODIS and AmeriFlux data. Agricultural and Forest Meteorology, 156(4): 75-84. doi:  10.1016/j.agrformet.2012.01.003
[41] Turner D P, Urbanski S, Bremer D et al., 2003. A cross-biome comparison of daily light use efficiency for gross primary production. Global Change Biology, 9(3): 383-395. doi: 10.1046/ j.1365-2486.2003.00573.x
[42] Verma M, Friedl M A, Richardson A D et al., 2014. Remote sensing of annual terrestrial gross primary productivity from MODIS: an assessment using the FLUXNET La Thuile data set. Biogeosciences, 11(8): 2185-2200. doi:  10.5194/bgd-10-11627-2013
[43] Wang X, Ma M, Li X et al., 2013. Validation of MODIS-GPP product at 10 flux sites in northern China. International Journal of Remote Sensing, 34(2): 587-599. doi: 10.1080/ 01431161.2012.715774
[44] Wang Y, Woodcock C E, Buermann W et al., 2004. Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sensing of Environment, 91(1): 114-127. doi: 10. 1016/j.rse.2004.02.007
[45] Williams C A, Hanan N P, Baker I et al., 2008. Interannual variability of photosynthesis across Africa and its attribution. Biogeosciences, 113: G04015. doi:  10.1029/2008JG000718
[46] Wu C Y, Munger J W, Niu Z et al., 2010. Comparison of multiple models for estimating gross primary production using MODIS and eddy covariance data in Harvard Forest. Remote Sensing of Environment, 114(12): 2925-2939. doi: 10.1016/j.rse.2010. 07. 012
[47] Wu C, Chen J M, Huang N, 2011. Predicting gross primary production from the enhanced vegetation index and photosynthetically active radiation: evaluation and calibration. Remote Sensing of Environment, 115(12): 3424-3435. doi: 10.1016/j. rse.2011.08.006
[48] Xiao J, Zhuang Q, Law B E et al., 2010. A continuous measure of gross primary production for the conterminous U.S. derived from MODIS and AmeriFlux data. Remote Sensing of Environment, 114(3): 576-591. doi:  10.1016/j.rse.2009.10.013
[49] Yang F H, Ichii K, White M A et al., 2007. Developing a continental-scale measure of gross primary production by combining MODIS and AmeriFlux data through support vector machine approach. Remote Sensing of Environment, 110(1): 109-122. doi:  10.1016/j.rse.2007.02.016
[50] Zhao M, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940-943. doi: 10.1126/science. 1192666
[51] Zhao M, Running S W, Nemani R R, 2006. Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. Biogeosciences, 111(G1). doi: 10.1029/ 2004JG000004