[1] Batty M, Xie Y, Sun Z, 1999. Modeling urban dynamics through GIS-based cellular automata. Computers, Environment and Urban Systems, 23(3): 205-233. doi: 10.1016/S0198-9715(99) 00015-0
[2] Cao M, Tang G A, Zhang Fang et al., 2013. A cellular automata model for simulating the evolution of positive-negative terrains in a small loess watershed. International Journal of Geographical Information Science, 27(7): 1349-1363. doi: 10. 1080/13658816.2012.756882
[3] Chase C G, 1992. Fluvial landsculpting and the fractal dimension of topography. Geomorphology, 5(1): 39-57.
[4] Clark P J, Evans F C, 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4): 445-453.
[5] Clarke K C, Brass J A, Riggan P J, 1994. A cellular automata model of wildfire propagation and extinction. Photogrammetric Engineering & Remote Sensing, 60(11): 1355-1367.
[6] Clarke K C, Gaydos L J, 1998. Loose-coupling a cellular automata model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore. International Journal of Geographical Information Science, 12(7): 699-714.
[7] Clarke K C, Hoppen S, Gaydos L J, 1997. A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design, 24(2): 247-261.
[8] Couclelis H, 1985. Cellular worlds: A framework for modeling micro-macro dynamics. Environment and Planning, A(17): 585-596.
[9] Couclelis H, 1988. Of mice and men: What rodent populations can teach us about complex spatial dynamics. Environment and Planning A, 20(1): 99-109.
[10] Couclelis H, 1989. Macrostructure and microbehavior in a metropolitan area. Environment and planning B, 16(2): 141-154.
[11] Couclelis H, 1997. From cellular automata to urban models: New principles for model development and implementation. Environment and Planning B: Planning and Design, 24(2): 165-174.
[12] Cui Lingzhou, 2002. The Coupling Relationship Between the Sediment Yield of Rainfall Erosion and the Topographic Feature of Small Watershed on Loess Plateau. Yangling: Institute of Soil and Water Conservation, Chinese Academy of Sciences.
[13] Densmore A L, Ellis M A, Anderson R S, 1998. Landsliding and the evolution of normal fault-bounded mountains. Journal of Geophysical Research: Solid Earth, 103(B7): 15203-15219. doi:  10.1029/98JB00510
[14] Gatrell A C, Bailey T C, Diggle P J et al., 1996. Spatial point pattern analysis and its application in geographical epidemiology. Transactions of the Institute of British Geographers, 21(1): 256-274.
[15] Gregorio S D, Serra R, 1999. An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Generation Computer Systems, 16(2): 259-271. doi:  10.1016/S0167-739X(99)00051-5
[16] Haase P, 1995. Spatial pattern analysis in ecology based on Ripley's K-function: Introduction and methods of edge correction. Journal of Vegetation Science, 6(4): 575-582. doi: 10.2307/ 3236356
[17] Hargrove W W, Gardner R H, Turner M G et al., 2000. Simulating fire patterns in heterogeneous landscapes. Ecological modelling, 135(2): 243-263.
[18] Howard A D, 1994. A detachment-limited model of drainage basin evolution. Water Resources Research, 30(7): 2261-2285. doi:  10.1029/94WR00757
[19] Ke C Q, 2006. Modeling soil erosion in Chinese Loess Plateau using Cellular Automata. Geoscience and Remote Sensing Symposium, 2006. IEEE International Conference on, 1063-1066. doi:  10.1109/IGARSS.2006.274
[20] Li X, Liu X P, 2006. An extended cellular automaton using case-based reasoning for simulating urban development in a large complex region. International Journal of Geographical Information Science, 20: 1109-1136. doi: 10.1080/13658810 600816870
[21] Li X, Yeh A G O, 2000. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. International Journal of Geographical Information Science, 14(2): 131-152. doi:  10.1080/136588100240886
[22] Li X, Yeh A G O, 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science, 16(4): 323-343. doi:  10.1080/13658810210137004
[23] Liu X P, Li X, Liu L et al., 2008a. A bottom-up approach to discover transition rules of cellular automata using ant intelligence. International Journal of Geographical Information Science, 22(11-12): 1247-1269. doi:  10.1080/13658810701757510
[24] Liu X P, Li X, Shi X et al., 2008b. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modelling, 211(1): 169-181. doi: 10.1016/j.ecol model.2007.08.024
[25] Liu X P, Li X, Shi X et al., 2010. Simulating land use dynamics under planning policies by integrating artificial immune systems with cellular automata. International Journal of Geographical Information Science, 24(5): 783-802. doi: 10.1080/ 13658810903270551
[26] Liu X P, Ma L, Li X et al., 2014. Simulating urban growth by integrating landscape expansion index (LEI) and cellular automata. International Journal of Geographical Information Science, 28(1): 148-163. doi:  10.1080/13658816.2013.831097
[27] Liu Xiaoping, Li Xia, 2007. Fisher discriminant and automatically getting transition rule of CA. Acta Geodaetica et Cartographica Sinica, 36(1): 112-118. (in Chinese)
[28] Mandelbrot B B, 1983. The Fractal Geometry of Nature/Revised and Enlarged Edition. New York: W.H. Freeman and Company, 495.
[29] Moran P A P, 1950. Notes on continuous stochastic phenomena. Biometrika, 37(1-2): 17-23.
[30] Murray A B, Paola C, 1994. A cellular model of braided rivers. Nature, 371(6492): 54-57. doi:  10.1038/371054a0
[31] Neil G, Curtis K, 1997. Shape recognition using fractal geometry. Pattern Recognition, 30(12): 1957-1969.
[32] Ripley B D, 1977. Modelling spatial patterns. Journal of the Royal Statistical Society. Series B (Methodological), 39(2): 172-212.
[33] Shi H, Shao M, 2000. Soil and water loss from the Loess Plateau in China. Journal of Arid Environments, 45(1): 9-20. doi:  10.1006/jare.1999.0618
[34] Smith R, 1991. The application of cellular automata to the erosion of landforms. Earth Surface Processes and Landforms, 16(3): 273-281. doi:  10.1002/esp.3290160307
[35] Tian Y, Wu L, Gao Y et al., 2008. DEM-based modeling and simulation of modern landform evolution of loess. In: Earth and Environmental Science, Advances in Digital Terrain Analysis, Lecture Notes in Geoinformation and Cartography (Section 3). Berlin: Springer, 257-276.
[36] Tucker G E, Slingerland R L, 1994. Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study. Journal of Geophysical Research: Solid Earth (1978-2012), 99(B6): 12229-12243.
[37] Unwin D J, 1996. GE, spatial analysis and spatial statistics. Progress in Human Geography, 20(4): 540-551.
[38] Wang Y, Zhang X, 2001. A dynamic modeling approach to simulating socioeconomic effects on landscape changes. Ecological Modelling, 140(1): 141-162. doi: 10.1016/S0304-3800 (01)00262-9
[39] White R, Engelen G, 1993. Cellular automata and fractal urban form: A cellular modeling approach to the evolution of urban land-use patterns. Environment and Planning A, 25(8): 1175-1199.
[40] Willgoose G, 2005. Mathematical modeling of whole landscape evolution. Annual Review of Earth and Planetary Sciences, 33(1): 443-459. doi:  10.1146/annurev.earth.33.092203.122610
[41] Willgoose G, Bras R L, Rodriguez-Iturbe I, 1991. Results from a new model of river basin evolution. Earth Surface Processes and Landforms, 16(3): 237-254. doi:  10.1002/esp.3290160305
[42] Wu F, 2002. Calibration of stochastic cellular automata: The application to rural-urban land conversions. International Journal of Geographical Information Science, 16(8): 795-818. doi:  10.1080/13658810210157769
[43] Wu F, Webster C J, 1998. Simulation of land development through the integration of cellular automata and multicriteria evaluation. Environment and Planning B: Planning and Design, 25(1): 103-126.
[44] Yang J Y, Tang G O, Cao M et al., 2013. An intelligent method to discover transition rules for cellular automata using bee colony optimisation. International Journal of Geographical Information Science, 27(10): 1849-1864. doi: 10.1080/13658 816.2013.823498
[45] Zucca C, Canu A, Della Peruta R, 2006. Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy). Catena, 68(2): 87-95. doi:  10.1016/j.catena.2006.03.015