[1] Abdi O A, Glover E K, Luukkanen O, 2013. Causes and impacts of land degradation and desertification: case study of the Sudan. International Journal of Agriculture and Forestry, 3(2): 40–51. doi:  10.5923/j.ijaf.20130302.03
[2] Andersen C B, Donovan R K, Quinn J E, 2015. Human appropriation of net primary production (HANPP) in an agriculturally-dominated watershed, southeastern USA. Land, 4(2): 513–540. doi:  10.3390/land4020513
[3] Chen B X, Zhang X Z, Tao J et al., 2014. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 189–190: 11–18. doi:  10.1016/j.agrformet.2014.01.002
[4] Chen T, Bao A M, Jiapaer G et al., 2019. Disentangling the relative impacts of climate change and human activities on arid and semiarid grasslands in Central Asia during 1982–2015. Science of the Total Environment, 653: 1311–1325. doi:  10.1016/j.scitotenv.2018.11.058
[5] Chen Y Z, Ju W M, Groisman P et al., 2017. Quantitative assessment of carbon sequestration reduction induced by disturbances in temperate Eurasian steppe. Environmental Research Letters, 12(11): 115005. doi:  10.1088/17489326/aa849b
[6] Cugny C, Mazier F, Galop D, 2010. Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. Vegetation History and Archaeobotany, 19(5): 391–408. doi:  10.1007/s00334-010-0242-6
[7] De Leeuw J, Rizayeva A, Namazov E et al., 2019. Application of the MODIS MOD 17 Net primary production product in grassland carrying capacity assessment. International Journal of Applied Earth Observation and Geoinformation, 78: 66–76. doi:  10.1016/j.jag.2018.09.014
[8] Erb K H, Kastner T, Plutzar C et al., 2018. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 553(7686): 73–76. doi:  10.1038/nature25138
[9] Fang J Y, Yu G R, Liu L L et al., 2018. Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115(16): 4015–4020. doi:  10.1073/pnas.1700304115
[10] Guan J Y, Yao J Q, Li M Y et al., 2021. Assessing the spatiotemporal evolution of anthropogenic impacts on remotely sensed vegetation dynamics in Xinjiang, China. Remote Sensing, 13(22): 4651. doi:  10.3390/rs13224651
[11] Hauck M, Artykbaeva G T, Zozulya T N et al., 2016. Pastoral livestock husbandry and rural livelihoods in the forest-steppe of east Kazakhstan. Journal of Arid Environments, 133: 102–111. doi:  10.1016/j.jaridenv.2016.05.009
[12] Hu Z Y, Zhang C, Hu Q et al., 2014. Temperature changes in Central Asia from 1979 to 2011 based on multiple datasets. Journal of Climate, 27(3): 1143–1167. doi:  10.1175/JCLI-D-13-00064.1
[13] Jiao W, Chen Y N, Li W H et al., 2018. Estimation of net primary productivity and its driving factors in the Ili River Valley, China. Journal of Arid Land, 10(5): 781–793. doi:  10.1007/s40333-018-0022-1
[14] Li A, Wu J G, Huang J H, 2012. Distinguishing between human-induced and climate-driven vegetation changes: a critical application of RESTREND in Inner Mongolia. Landscape Ecology, 27(7): 969–982. doi:  10.1007/s10980-012-9751-2
[15] Li H, Zhang H Y, Li Q X et al., 2021. Vegetation productivity dynamics in response to climate change and human activities under different topography and land cover in Northeast China. Remote Sensing, 13(5): 975. doi:  10.3390/rs13050975
[16] Liang W, Yang Y T, Fan D M et al., 2015. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agricultural and Forest Meteorology, 204: 22–36. doi:  10.1016/j.agrformet.2015.01.015
[17] Liu C Y, Dong X F, Liu Y Y, 2015. Changes of NPP and their relationship to climate factors based on the transformation of different scales in Gansu, China. Catena, 125: 190–199. doi:  10.1016/j.catena.2014.10.027
[18] Luo G P, Han Q F, Zhou D C et al., 2012. Moderate grazing can promote aboveground primary production of grassland under water stress. Ecological Complexity, 11: 126–136. doi:  10.1016/j.ecocom.2012.04.004
[19] McNally A, Arsenault K, Kumar S et al., 2017. A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data, 4(1): 170012. doi:  10.1038/sdata.2017.12
[20] Mowll W, Blumenthal D M, Cherwin K et al., 2015. Climatic controls of aboveground net primary production in semi-arid grasslands along a latitudinal gradient portend low sensitivity to warming. Oecologia, 177(4): 959–969. doi:  10.1007/s00442-015-3232-7
[21] Park H, Jeong S J, Ho C H et al., 2015. Nonlinear response of vegetation green-up to local temperature variations in temperate and boreal forests in the Northern Hemisphere. Remote Sensing of Environment, 165: 100–108. doi:  10.1016/j.rse.2015.04.030
[22] Piao S, Fang J Y, He J S, 2006. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999. Climatic Change, 74(1–3): 253–267. doi:  10.1007/s10584-005-6339-8
[23] Plutzar C, Kroisleitner C, Haberl H et al., 2016. Changes in the spatial patterns of human appropriation of net primary production (HANPP) in Europe 1990–2006. Regional Environmental Change, 16(5): 1225–1238. doi:  10.1007/s10113-015-0820-3
[24] Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4): 811–841. doi:  10.1029/93GB02725
[25] Pueppke S G, Nurtazin S T, Graham N A et al., 2018a. Central Asia’s Ili River ecosystem as a wicked problem: unraveling complex interrelationships at the interface of water, energy, and food. Water, 10(5): 541. doi:  10.3390/w10050541
[26] Pueppke S G, Zhang Q L, Nurtazin S T, 2018b. Irrigation in the Ili River basin of Central Asia: from ditches to dams and diversion. Water, 10(11): 1650. doi:  10.3390/w10111650
[27] Qi J G, Tao S Q, Pueppke S G et al., 2020. Changes in land use/land cover and net primary productivity in the transboundary Ili-Balkhash basin of Central Asia, 1995–2015. Environmental Research Communications, 2(1): 011006. doi:  10.1088/2515-7620/ab5e1f
[28] Qin X, Liu W B, Mao R C et al., 2021. Quantitative assessment of driving factors affecting human appropriation of net primary production (HANPP) in the Qilian Mountains, China. Ecological Indicators, 121: 106997. doi:  10.1016/j.ecolind.2020.106997
[29] Qu S, Wang L C, Lin A W et al., 2018. What drives the vegetation restoration in Yangtze River basin, China: climate change or anthropogenic factors? Ecological Indicators, 90: 438–450. doi:  10.1016/j.ecolind.2018.03.029
[30] Raich J W, Rastetter E B, Melillo J M et al., 1991. Potential net primary productivity in South America: application of a global model. Ecological Applications, 1(4): 399–429. doi:  10.2307/1941899
[31] Rojstaczer S, Sterling S M, Moore N J, 2001. Human appropriation of photosynthesis products. Science, 294(5551): 2549–2552. doi:  10.1126/science.1064375
[32] Sanaei A, Li M S, Ali A, 2019. Topography, grazing, and soil textures control over rangelands’ vegetation quantity and quality. Science of the Total Environment, 697: 134153. doi:  10.1016/j.scitotenv.2019.134153
[33] Shi Y F, Shen Y P, Kang E S et al. , 2007. Recent and future climate change in northwest China. Climatic Change, 80(3–4): 379–393. doi:  10.1007/s10584-006-9121-7
[34] Thevs N, Beckmann V, Akimalieva A et al., 2017. Assessment of ecosystem services of the wetlands in the Ili River Delta, Kazakhstan. Environmental Earth Sciences, 76(1): 30. doi:  10.1007/s12665-016-6346-2
[35] Ukkola A M, Prentice I C, Keenan T F et al., 2016. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nature Climate Change, 6(1): 75–78. doi:  10.1038/nclimate2831
[36] Wang C, Gao Q, Wang X et al., 2016. Spatially differentiated trends in urbanization, agricultural land abandonment and reclamation, and woodland recovery in Northern China. Scientific Reports, 6(1): 37658. doi:  10.1038/srep37658
[37] Xiong Q L, Pan K W, Zhang L et al., 2016. Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai–Tibet Plateau, southwestern China. Applied Soil Ecology, 101: 72–83. doi:  10.1016/j.apsoil.2016.01.011
[38] Xiong Q L, Xiao Y, Halmy M W A et al., 2019. Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet Plateau of China during 2000–2015. Journal of Arid Land, 11(5): 637–651. doi:  10.1007/s40333-019-0061-2
[39] Yang Y H, Chen Y N, Li W H et al., 2010. Distribution of soil organic carbon under different vegetation zones in the Ili River Valley, Xinjiang. Journal of Geographical Sciences, 20(5): 729–740. doi:  10.1007/s11442-010-0807-4
[40] Yin L, Dai E F, Zheng D et al., 2020. What drives the vegetation dynamics in the Hengduan Mountain region, southwest China: climate change or human activity? Ecological Indicators, 112: 106013. doi:  10.1016/j.ecolind.2019.106013
[41] Yin Y T, Hou Y L, Langford C et al., 2019. Herder stocking rate and household income under the Grassland Ecological Protection Award Policy in northern China. Land Use Policy, 82: 120–129. doi:  10.1016/j.landusepol.2018.11.037
[42] Zeng B, Yang T B, 2008. Impacts of climate warming on vegetation in Qaidam Area from 1990 to 2003. Environmental Monitoring and Assessment, 144(1): 403–417. doi:  10.1007/s10661-007-0003-x
[43] Zhang C, Wang X, Li J, 2011. Roles of climate changes and human interventions in land degradation: a case study by net primary productivity analysis in China’s Shiyanghe Basin. Environmental Earth Sciences, 64(8): 2183–2193. doi:  10.1007/s12665-011-1046-4
[44] Zhang R P, Liang T G, Guo J et al., 2018. Grassland dynamics in response to climate change and human activities in Xinjiang from 2000 to 2014. Scientific Reports, 8(1): 2888. doi:  10.1038/s41598-018-21089-3
[45] Zhang Y Z, Wang Q, Wang Z Q et al., 2021. Dynamics and drivers of grasslands in the Eurasian steppe during 2000–2014. Sustainability, 13(11): 5887. doi:  10.3390/su13115887
[46] Zhou D C, Hao L, Kim J B et al., 2019. Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau. Climatic Change, 156(1): 31–50. doi:  10.1007/s10584-019-02524-4
[47] Zhou J H, Cai W T, Qin Y et al., 2016. Alpine vegetation phenology dynamic over 16 years and its covariation with climate in a semi-arid region of China. Science of the Total Environment, 572: 119–128. doi:  10.1016/j.scitotenv.2016.07.206
[48] Zhou W, Gang C, Zhou F et al., 2015. Quantitative assessment of the individual contribution of climate and human factors to desertification in Northwest China using net primary productivity as an indicator. Ecological Indicators, 48: 560–569. doi:  10.1016/j.ecolind.2014.08.043
[49] Zhou W, Yang H, Huang L et al., 2017. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecological Indicators, 83: 303–313. doi:  10.1016/j.ecolind.2017.08.019
[50] Zhu W Q, Pan Y Z, He H et al., 2006. Simulation of maximum light use efficiency for some typical vegetation types in China. Chinese Science Bulletin, 51(4): 457–463. doi:  10.1007/s11434-006-0457-1