[1] Bai Guangrun, Wang Shengzhong, Leng Xuetian et al. , 1999. Bio-environmental mechanism of herbaceous peat forming. Acta Geographica Sinica. 54(3): 247−254 (in Chinese).
[2] Bastiaansen R, Doelman A, Eppinga M B et al., 2020. The effect of climate change on the resilience of ecosystems with adaptive spatial pattern formation. Ecology Letters, 23(3): 414–429. doi:  10.1111/ele.13449
[3] Beckage B, Osborne B, Gavin D G et al., 2008. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont of the United States of America. Proceedings of the National Academy of Sciences, 105(11): 4197–4202. doi:  10.1073/pnas.0708921105
[4] Bellard C, Bertelsmeier C, Leadley P et al., 2012. Impacts of climate change on the future of biodiversity. Ecology letters, 15(4): 365–377. doi:  10.1111/j.1461-0248.2011.01736.x
[5] Bertrand R, Lenoir J, Piedallu C et al., 2011. Changes in plant community composition lag behind climate warming in lowland forests. Nature, 479(7374): 517–520. doi:  10.1038/nature10548
[6] Bonin C L, Zedler J B, 2008. Southern California salt marsh dominance relates to plant traits and plasticity. Estuaries and Coasts, 31(4): 682–693. doi:  10.1007/s12237-008-9057-4
[7] Cao B, Bai C K, Xue Y et al., 2020. Wetlands rise and fall: six endangered wetland species showed different patterns of habitat shift under future climate change. Science of The Total Environment, 731: 138518. doi:  10.1016/j.scitotenv.2020.138518
[8] Crain C M, Bertness M D, 2005. Community impacts of a tussock sedge: is ecosystem engineering important in benign habitats? Ecology, 86(10): 2695–2704. doi:  10.1890/04-1517
[9] Du H B, Liu J, Li M H et al., 2018. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. Global Change Biology, 24(3): 1256–1266. doi:  10.1111/gcb.13963
[10] Fu J, Liu J, Wang X W et al., 2020. Ecological risk assessment of wetland vegetation under projected climate scenarios in the Sanjiang Plain, China. Journal of Environmental Management, 273: 111108. doi:  10.1016/j.jenvman.2020.111108
[11] Geng X J, Fu Y H, Hao F H et al., 2020. Climate warming increases spring phenological differences among temperate trees. Global Change Biology, 26(10): 5979–5987. doi:  10.1111/gcb.15301
[12] Gosejohan M C, Weisberg P J, Merriam K E, 2017. Hydrologic influences on plant community structure in vernal pools of Northeastern California. Wetlands, 37(2): 257–268. doi:  10.1007/s13157-016-0863-3
[13] Han Yuanyuan, Wang Ming, Wang Shengzhong et al., 2018. Characteristics of Soil Enzyme activity of peat bog in Jinchuan, Changbai Mountain. Wetland Science, 16(5): 671–678. (in Chinese). doi:  10.13248/j.cnki.wetlandsci.2018.05.014
[14] He Wei, Bu Rencang, Xiong Zaiping et al., 2013. Characteristics of temperature and precipitation in Northeastern China from 1961 to 2005. Acta Eclogical Sinica, 33(2): 519–531. (in Chinese). doi:  10.5846/stxb201111241799
[15] Hunter E A, Raney P A, Gibbs J P et al., 2012. Improving wetland mitigation site identification through community distribution modeling and a patch-based ranking scheme. Wetlands, 32(5): 841–850. doi:  10.1007/s13157-012-0315-7
[16] Hu W J, Wang Y, Dong P et al., 2020. Predicting potential mangrove distributions at the global northern distribution margin using an ecological niche model: determining conservation and reforestation involvement. Forest Ecology and Management, 478: 118517. doi:  10.1016/j.foreco.2020.118517
[17] Jin Yinghua, Zhang Yingjie, Xu Jiawei et al., 2018. Comparative assessment of tundra vegetation changes between north and southwest slopes of Changbai Mountains, China, in response to global warming. Chinese Geographical Science, 28(4): 665–679. doi:  10.1007/s11769-018-0978-y
[18] Johnston C A, Zedler J B, 2012. Identifying preferential associates to initiate restoration plantings. Restoration Ecology, 20(6): 764–772. doi:  10.1111/j.1526-100x.2011.00837.x
[19] Koncki N G, Aronson M F J, 2015. Invasion risk in a warmer world: modeling range expansion and habitat preferences of three nonnative aquatic invasive plants. Invasive Plant Science and Management, 8(4): 436–449. doi:  10.1614/ipsm-d-15-00020.1
[20] Lawrence B A, Zedler J B, 2013. Carbon storage by Carex stricta tussocks: a restorable ecosystem service? Wetlands, 33(3): 483–493. doi:  10.1007/s13157-013-0405-1
[21] Lawrence B A, Zedler J B, 2011. Formation of tussocks by sedges: effects of hydroperiod and nutrients. Ecological Applications, 21(5): 1745–1759. doi:  10.1890/10-1759.1
[22] Li Xiaojiang, Zhao Chao, Zhou Xinying, 2019a. Vegetation pattern of Northeast China during the special periods since the Last Glacial Maximum. Science China Earth Sciences, 62: 1224–1240. doi:  10.1007/s11430-018-9347-3
[23] Li Yan, Cao Wei, He Xingyuan et al., 2019b. Prediction of suitable habitat for lycophytes and ferns in Northeast China: a case study on Athyrium brevifrons. Chinese Geographical Science, 29(6): 1011–1023. doi:  10.1007/s11769-019-1085-4
[24] Li Yingnian, Zhao Xinquan, Zhao Liang et al., 2003. Analysis of vegetation succession and climate change in Haibei alpine marsh in the Qilian Mountains. Journal of Glaciology and Geocryology, 25(3): 243–349. (in Chinese)
[25] Liu G D, Sun J F, Tian K et al., 2017. Long-term responses of leaf litter decomposition to temperature, litter quality and litter mixing in plateau wetlands. Freshwater Biology, 62(1): 178–190. doi:  10.1111/fwb.12860
[26] Liu Chao, Huo Hongliang, Tian Luming et al., 2018. Potential geographical distribution of Pyrus calleryana under different climate change scenarios based on the MaxEnt model. Chinese Journal of Applied Ecology, 29(11): 3696–3704. (in Chinese)
[27] Liu Shuangshuang, Wang Ming, Dong Yanmin et al., 2018. The influence of hummock microtopography on plant litter decomposition in Carex peat mire. Wetland Science, 37(1): 95–102. (in Chinese)
[28] Liu Yan. 2020. Mechanism and pattern analysis of wetland hydrological connectivity—taking Momoge National Natural as an example. Changchun: Jilin University. (in Chinese)
[29] Lou Y J, Gao C Y, Pan Y W et al., 2018. Niche modelling of marsh plants based on occurrence and abundance data. Science of the Total Environment, 616: 198–207. doi:  10.1016/j.scitotenv.2017.10.300
[30] Mao D H, Luo L, Wang Z M et al., 2018. Conversions between natural wetlands and farmland in China: a multiscale geospatial analysis. Science of the Total Environment, 634: 550–560. doi:  10.1016/j.scitotenv.2018.04.009
[31] Mao Dehua. 2014. Quantitative assessment in the impacts of human activities on net primary productivity of wetlands in the Northeast China. Changchun: Northeast Institute of geography and Agroecology, Chinese Academy of Sciences. (in Chinese)
[32] Man Xiuling, Cai Tijiu, 2005. Hydrochemical characteristics of three kinds of wetland in Gongbiela Basin. Chinese Journal of Applied Ecology, 16(7): 1335–1340. (in Chinese)
[33] Menzel A, Sparks T H, Estella N et al., 2006. European phenological response to climate change matches the warming pattern. Global Change Biology, 12(10): 1969–1976. doi:  10.1111/j.1365-2486.2006.01193.x
[34] Osland M J, González E, Richardson C J, 2011. Restoring diversity after cattail expansion: disturbance, resilience, and seasonality in a tropical dry wetland. Ecological Applications, 21(3): 715–728. doi:  10.1890/09-0981.1
[35] Pan X L, Zhang D Y, Quan L, 2006. Interactive factors leading to dying-off Carex tato in Momoge wetland polluted by crude oil, Western Jilin, China. Chemosphere, 65(10): 1772–1777. doi:  10.1016/j.chemosphere.2006.04.063
[36] Peach M, Zedler J B, 2006. How tussocks structure sedge meadow vegetation. Wetlands, 26(2): 322–335. doi:  doi:10.1672/0277-5212(2006)26[322:HTSSMV]2.0.CO;2
[37] Pearson R G, Stanton J C, Shoemaker K T et al., 2014. Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change, 4(3): 217–221. doi:  10.1038/nclimate2113
[38] Pecl G T, Araújo M B, Bell J D et al., 2017. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science, 355(6332): eaai9214. doi:  10.1126/science.aai9214
[39] Phillips S J, Anderson R P, Schapire R E, 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3−4): 231–259. doi:  10.1016/j.ecolmodel.2005.03.026
[40] Piao Shilong, Zhang Xingping, Chen Anping et al., 2019. The impacts of climate extremes on the terrestrial carbon cycle: a review. Science China Earth Sciences, 62(10): 1551–1563. (in Chinese)
[41] Qi Q, Zhang D J, Tong S Z et al., 2021. The driving mechanisms for community expansion in a restored Carex tussock wetland. Ecological Indicators, 121: 107040. doi:  10.1016/j.ecolind.2020.107040
[42] Qin A L, Liu B, Guo, Q S et al., 2017. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch, an extremely endangered conifer from southwestern China. Global Ecology and Conservation, 10: 139–146. doi:  10.1016/j.gecco.2017.02.004
[43] Rabasa S G, Granda E, Benavides R et al., 2013. Disparity in elevational shifts of European trees in response to recent climate warming. Global Change Biology, 19(8): 2490–2499. doi:  10.1111/gcb.12220
[44] Riis T, Sand-Jensen K, Larsen S E, 2001. Plant distribution and abundance in relation to physical conditions and location within Danish stream systems. Hydrobiologia, 448(1-3): 217–228. doi:  10.1023/A:1017580424029
[45] Root T L, Price J T, Hall K R et al., 2003. Fingerprints of global warming on wild animals and plants. Nature, 421(6918): 57–60. doi:  10.1038/nature01333
[46] Saintilan N, Wilson N C, Rogers K et al., 2014. Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology, 20(1): 147–157. doi:  10.1111/gcb.12341
[47] Shen M G, Piao S L, Dorji T et al., 2015. Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2(4): 454–467. doi:  10.1093/nsr/nwv058
[48] Shen X J, Liu B, Xue Z S et al., 2019. Spatiotemporal variation in vegetation spring phenology and its response to climate change in freshwater marshes of Northeast China. Science of The Total Environment, 666: 1169–1177. doi:  10.1016/j.scitotenv.2019.02.265
[49] Sun J M, Wu H X, Lu L et al., 2021. Factors associated with spatial distribution of severe fever with thrombocytopenia syndrome. Science of The Total Environment, 750: 141522. doi:  10.1016/j.scitotenv.2020.141522
[50] Thakur D, Chawla A, 2019. Functional diversity along elevational gradients in the high altitude vegetation of the western Himalaya. Biodiversity and Conservation, 28(8–9): 1977–1996. doi:  10.1007/s10531-019-01728-5
[51] Thomas C D, Cameron A, Green R E et al., 2004. Extinction risk from climate change. Nature,, 427(6970): 145–148. doi:  10.1038/nature02121
[52] Thuiller W, Richardson D M, Rouget M et al., 2006. Interactions between environment, species traits, and human uses describe patterns of plant invasions. Ecology, 87(7): 1755–1769. doi:  10.1890/0012-9658(2006)87[1755:ibesta]2.0.co;2
[53] Tilman D, Clark M., Williams D R et al., 2017. Future threats to biodiversity and pathways to their prevention. Nature, 546(7656): 73–81. doi:  10.1038/nature22900
[54] Tong Shouzheng, Lv Xianguo, Su Liying et al., 2008. Changing process and the impact factors of wetland ecosystem in Zhaolong Wetland. Wetland Science, 6(2): 179–184. (in Chinese)
[55] Urban M C, 2015. Accelerating extinction risk from climate change. Science, 348(6234): 571–573. doi:  10.1126/science.aaa4984
[56] Urbina-Cardona J N, Flores-Villela O, 2010. Ecological-Niche modeling and prioritization of conservation-area networks for Mexican Herpetofauna. Conservation Biology, 24(4): 1031–1041. doi:  10.1111/j.1523-1739.2009.01432.x
[57] Van der Putten W H, Macel M, Visser M E, 2010. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B-Biological Sciences, 365(1549): 2025–2034. doi:  10.1098/rstb.2010.0037
[58] Vetter V M S, Tjaden N B, Jaeschke A et al., 2018. Invasion of a legume ecosystem engineer in a cold biome alters plant biodiversity. Frontiers in Plant Science, 9: 715. doi:  10.3389/fpls.2018.00715
[59] Walther G R., Post E, Convey P et al., 2002. Ecological responses to recent climate change. Nature, 416(6879): 389–395. doi:  10.1038/416389a
[60] Wang G D, Middleton B, Jiang M, 2013. Restoration potential of sedge meadows in hand-cultivated soybean fields in Northeastern China. Restoration Ecology, 21(6): 801–808. doi:  10.1111/rec.12015
[61] Wang G D, Wang M, Lu X G et al., 2015. Effects of farming on the soil seed banks and wetland restoration potential in Sanjiang Plain, Northeastern China. Ecological Engineering, 77: 265–274. doi:  10.1016/j.ecoleng.2015.01.039
[62] Wang G D, Jiang M, Wang M et al., 2019a. Natural revegetation during restoration of wetlands in the Sanjiang Plain, Northeastern China. Ecological Engineering, 132: 49–55. doi:  10.1016/j.ecoleng.2019.04.001
[63] Wang Ming, Li Xingli, Dong Yanmin et al., 2021. Plant species diversity of Carex peat mire in Changbai Mountains, China. Chinese Journal of Applied Ecology, 32(06): 2138–2146. doi:  10.13287/j.1001-9332.202106.002
[64] Wang X H, Zhang D J, Qi Q et al., 2019b. The restoration feasibility of degraded Carex Tussock in soda-salinization area in arid region. Ecological Indicators, 98: 131–136. doi:  10.1016/j.ecolind.2018.08.066
[65] Wang Zhiliang, Zhang Bai, Zhang Xuezhen et al., 2019c. Using MaxEnt model to guide marsh conservation in the Nenjiang River Basin, Northeast China. Chinese Geographical Science, 29(6): 962–973. doi:  10.1007/s11769-019-1082-7
[66] Wang Zhenhai, Yin Xiuqin, Song Xueshu, 2014. Diversity of Soil Animals in Marshes of Longwan National Nature Reserve. Wetland Science, 12(05): 566–573. (in Chinese). doi:  10.13248/j.cnki.wetlandsci.2014.05.005
[67] Wei Y Q, Zhang L, Wang J N et al., 2021. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: current distribution, trading, and futures under climate change and overexploitation. Science of The Total Environment, 755: 142548. doi:  10.1016/j.scitotenv.2020.142548
[68] Yao Y, Bera S, Naskar K et al., 2011. A comparative study of mangrove floras in China and India. Forestry Studies in China, 13(3): 173–182. doi:  10.1007/s11632-011-0209-4
[69] Yi Fuke, 2008. Wild Vascular Plant in Wetlands of Northeast China. Beijing: Science Press. (in Chinese)
[70] Zhang D J, Qi Q, Tong S Z et al., 2021. Effect of hydrological fluctuation on nutrient stoichiometry and trade-offs of Carex schmidtii. Ecological Indicators, 120: 106924. doi:  10.1016/j.ecolind.2020.106924
[71] Zhang D J, Tong S Z, Qi, Q et al., 2019a. Effects of drought and re-flooding on growth and photosynthesis of Carex schmidtii Meinsh: implication for tussock restoration. Ecological. Indicators, 103: 134–144. doi:  10.1016/j.ecolind.2019.04.005
[72] Zhang D J, Qi Q, Tong S Z et al. , 2019b. Soil Degradation effects on plant diversity and nutrient in tussock meadow wetlands. Journal of Soil Science and Plant Nutrition. doi: 10.1007/s42729-019-00052-9
[73] Zhang Dongjie, 2017. Distribution characteristics and ecological response of Carex tussock to water level in typical wetlands, Northeast China. Changchun: Northeast Institute of geography and Agroecology, Chinese Academy of Sciences. (in Chinese)
[74] Zhang Dongjie, Wang Xuehong, Tong Shouzheng et al., 2016. Plant diversity in the restored riparian wetlands along the downstream of Songhua River. Wetland Science, 14(6): 883–887. (in Chinese)
[75] Zhang Lijuan, Li Yanhong, Ren Han et al., 2020. Prediction of the suitable distribution of Cyclobalanopsis glauca and its implications for the northern boundary of subtropical zone of China. Geographical Research, 39(4): 990–1001. (in Chinese)
[76] Zong Ming, Han Guangxuan, Li Yunzhao et al., 2017. Predicting the potential distribution of dominant species of the coastal wetland in the Yellow River Delta, China using MaxEnt model. Chinese Journal of Applied Ecology, 28(6): 1833–1842. (in Chinese)
[77] Zong Shengwei. 2014. Mechanism Research on the Vegetation Changes of the Sub-alpine Tundra, Changbai Mountains. Changchun: Northeast Normal University. (in Chinese)
[78] Zou Y C, Wang L Y, Xue Z S et al., 2018. Impacts of agricultural and reclamation practices on wetlands in the Amur River Basin, Northeastern China. Wetlands, 38(2): 383–389. doi:  10.1007/s13157-017-0975-4