[1] Ainsworth E A, Long S P, 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2): 351-372. doi:  10.1111/j.1469-8137.2004.01224.x
[2] Berthelot M, Friedlingstein P, Ciais P et al., 2002. Global response of the terrestrial biosphere to CO2 and climate change using a coupled climate-carbon cycle model. Global Biogeo­-
[3] ch­emical Cycles, 16(4): 1084. doi:  10.1029/2001GB001827
[4] Bu R C, He H S, Hu Y M et al., 2008. Using the LANDIS model to evaluate forest harvesting and planting strategies under possible warming climates in northeastern China. Forest Ecology and Management, 254(3): 407-419. doi: 10.1016/j.foreco. 2007.09.080
[5] Caldwell I M, Maclaren V W, Chen J M et al., 2007. An integrated assessment model of carbon sequestration benefits: A case study of Liping County, China. Journal of Environ­mental Management, 85(3): 757-773. doi: 10.1016/j.jenvman. 2006.08.020
[6] Cao M, Woodward F I, 1998. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 393(6682): 249-252. doi:  10.1038/30460
[7] Chen J M, Chen W J, Liu J et al., 2000. Annual carbon balance of Canada's forests during 1895-1996. Global Biogeochemical Cycles, 14(3): 839-849. doi:  10.1029/1999GB001207
[8] Chen J M, Ju W M, Cihlar J et al., 2003. Spatial distribution of carbon sources and sinks in Canada's forests. Tellus B, 55(2): 622-641. doi:  10.1034/j.1600-0889.2003.00036.x
[9] Ciais P, Reichstein M, Viovy N et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058): 529-533. doi:  10.1038/nature03972
[10] Coomes D A, Holdaway R J, Kobe R K et al., 2012. A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. Journal of Ecology, 100(1): 42-64. doi:  10.1111/j.1365-2745.2011.01920.x
[11] Cooper C F, 1983. Carbon storage in managed forests. Canadian Journal of Forest Research, 13(1): 155-166. doi:  10.1139/x83-022
[12] Cramer W, Bondeau A, Woodward F I et al., 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7(4): 357-373. doi: 10.1046/j.1365-2486.2001.00383.x
[13] Eggers J, Lindner M, Zudin S et al., 2008. Impact of changing wood demand, climate and land use on European forest resources and carbon stocks during the 21st century. Global Change Biology, 14(10): 2288-2303. doi: 10.1111/j.1365-2486. 2008.01653.x
[14] Fang J Y, Chen A P, Peng C H et al., 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292(5525): 2320-2322. doi:  10.1126/science.1058629
[15] Fang J Y, Piao S L, Field C B et al., 2003. Increasing net primary production in China from 1982-1999. Frontiers in Ecology and the Environment, 1(6): 293-297. doi: 10.1890/1540-9295 (2003)001
[16] [0294:INPPIC]2.0.CO;2
[17] Farquhar G D, von Caemmerer S, Berry J A, 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1): 78-90. doi:  10.1007/BF00386231
[18] Feng X, Liu G, Chen J M et al., 2007. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing. Journal of Environmental Management, 85(3): 563-573. doi:  10.1016/j.jenvman.2006.09.021
[19] FAO (Food and Agriculture Organization of the United Nations), 2005. FAOSTAT Database. Available at: http://faostat.fao.org
[20] Giorgi F, Mearns L O, 2002. Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the ‘Reliability Ensemble Averaging (REA)' method. Journal of Climate, 15(10): 1141-1158. doi:  10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
[21] Giorgi F, Mearns L O, 2003. Probability of regional climate change based on the Reliability Ensemble Averaging (REA) method. Geophysical research letters, 30(12): 1629-1632. doi:  10.1029/2003GL017130
[22] Govinda A, Chen, J M, Bernierc P et al., 2011. Spatially distri­buted modeling of the long-term carbon balance of a boreal landscape. Ecological Modelling, 222(15): 2780-2795. doi:  10.1016/j.ecolmodel.2011.04.007
[23] Gusti M, 2010. An Algorithm for Simulation of Forest Management Decisions in the Global Forest Model. Artificial Intelligence, 4: 45-49.
[24] Gusti M, Kindermann G, 2011. An Approach to Modeling Land Use Change and Forest Management on a Global Scale. Austria: International Institute for Applied Systems Analysis.
[25] He H S, Larsen D R, Mladenoff D J, 2002. Exploring component based approaches in forest landscape modeling. Environmental Modelling and Software, 17(6): 519-529. doi:  10.1016/S1364-8152(02)00014-2
[26] Hutchinson M F, 2002. ANUSPLIN Version 4.2 User Guide. Canberra: Australian National University, 1-48.
[27] IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
[28] Jarvis P G, 1998. European Forests and Global Change: The Likely Impacts of Rising CO2 and Temperature. Cambridge: Cambridge University Press, 1-398.
[29] Joyce L A, Birdsey R, 2000. The Impacts of Climate Change on America's Forests: A Technical Document Supporting the 2000 USDA Forest Service RPA Assessment. Fort Collins: US Department of Agriculture, Forest Service, Rocky Mountain Research Station.
[30] Ju W M, Chen J M, 2005. Distribution of soil carbon stocks in Canada's forests and wetlands simulated based on drainage class, topography and remotely sensed vegetation parameters. Hydrological Processes, 19(1): 77-94. doi:  10.1002/hyp.5775
[31] Ju W M, Chen J M, Black T A et al., 2006. Modeling coupled water and carbon fluxes in a boreal aspen forest. Agricultural and Forest Meteorology, 140(1-4): 136-151. doi: 10.1016/j. agrformet.2006.08.008
[32] Ju W M, Chen J M, Harvey D et al., 2007. Future carbon balance of China's forests under climate change and increasing CO2. Journal of Environmental Management, 85(3): 538-562. doi:  10.1016/j.jenvman.2006.04.028
[33] Ju W M, Chen J M, 2008. Simulating the effects of past changes in climate, atmospheric composition, and fire disturbance on soil carbon in Canada's forests and wetlands. Global Biogeochemical Cycles, 22(3): GB3010. doi:  10.1029/2007GB002935
[34] Ju W M, Chen J M, Black T A et al., 2010. Spatially simulating changes of soil water content and their effects on carbon sequestration in Canada's forests and wetlands. Tellus, 62(3): 140-159. doi:  10.1111/j.1600-0889.2010.00459.x
[35] Kaipainen T, Liski J, Pussinen A et al., 2004. Managing carbon sinks by changing rotation length in European forests. Environmental Science and Policy, 7(3): 205-219. doi: 10.1016/j. envsci.2004.03.001
[36] Karjalainen T, Pussinen A, Liski J et al., 2003. Scenario analysis of the impacts of forest management and climate change on the European forest sector carbon budget. Forest Policy and Economics, 5(2): 141-155. doi: 10.1016/S1389-9341(03) 00021-2
[37] Kindermann G, Obersteiner M, Rametsteiner E et al., 2006. Predicting the Deforestation-Trend under Different Carbon-Prices. Carbon Balance and Management, 1(15): 1-17. doi: 10.1186/ 1750-0680-1-15
[38] Kindermann G, Obersteiner M, Sohngen B et al., 2008. Global cost estimates of reducing carbon emissions through avoided deforestation. Proceedings of the National Academy of Sciences of the United States of America, 105(30): 10302-10307. doi:  10.1073/pnas.0710616105
[39] Kindermann G, Schörghuber S, Linkosalo T et al., 2011. Potential Woody Biomass and Increments in the European Union until 2100. Austria: International Institute for Applied Systems Analysis.
[40] Liski J, Pussinen A, Pingoud K et al., 2001. Which rotationlength is favourable for carbon sequestration. Canadian Journal of Forest Research, 31(11): 2004-2013. doi:  10.1139/x01-140
[41] Liu Z L, Fang S Z, Liu D et al., 2011. Influence of thinning time and density on sprout development, biomass production and energy stocks of sawtooth oak stumps. Forest Ecology and Management, 262(2): 299-306. doi: 10.1016/j.foreco.2011.03. 035
[42] Long S P, Ainsworth E A, Rogers A et al., 2004. Rising atmospheric carbon dioxide: plants face the future. Annual Review of Plant Biology, 55: 591-628. doi: 10.1146/annurev.arplant.55. 031903.141610
[43] Luo T X, Li W H, Zhu H Z, 2002. Estimated biomass and productivity of natural vegetation on the Tibetan plateau. Ecological Applications, 12(4): 980-997. doi:  10.2307/3061031
[44] Luo Tianxiang, 1996. Patterns of Net Primary Productivity for Chinese Major Forest Types and Its Mathematical Models. Beijing: Commission for Integrated Survey of Natural Resources, Chinese Academy of Sciences. (in Chinese)
[45] Mäkipää R, Karjalainen T, Pussinen A et al., 1999. Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone. Canadian Journal of Forest Research, 29(10): 1490-1501. doi: 10.1139/ cjfr-29-10-1490
[46] McGuire A D, Sitch S, Clein J S et al., 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate, and land-use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 15(1): 183-206. doi:  10.1029/2000GB001298
[47] Melillo J M, Mcguire A D, Kicklighter D W et al., 1993. Global climate-change and terrestrial net primary production. Nature, 363(6426): 234-240. doi:  10.1038/363234a0
[48] Norby R J, DeLucia E H, Gielen B et al., 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences of the United States of America, 102(50): 18052-18056. doi: 10.1073/ pnas.0509478102
[49] Pacala S W, Socolow R, 2004. Stabilization wedges: Solving the climate problem for the next 50 years with current techno­logies. Science, 305(5686): 968-972. doi: 10.1126/science. 1100103
[50] Parton W J, Scurlock J M O, Ojima D S et al., 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7(4): 785-809. doi:  10.1029/93GB02042
[51] Pussinen A, Karjalainen T, Mäkipää R et al., 2002. Forest carbon sequestration and harvest in Scots pine stand under different climate and nitrogen deposition scenarios. Forest Ecology and Management, 158(1-3): 103-115. doi:  10.1029/93GB02042
[52] Ranatunga K, Keenan R J, Wullshchleger S D et al., 2008. Effects of harvest management practices on forest biomass and soil carbon in eucalypt forests in New South Wales, Australia: Simulations with the forest succession model LINKAGES. Forest Ecology and Management, 255(7): 2407-2415. doi:  10.1016/j.foreco.2008.01.002
[53] Rathgeber C, Nicault A, Guiot J et al., 2000. Simulated responses of Pinus halepensis forest productivity to climatic change and CO2 increase using a statistical model. Global and Planetary Change, 26(4): 405-421. doi:  10.1016/S0921-8181(00)00053-9
[54] Seely B, Welham C, Kimmins H, 2002. Carbon sequestration in a boreal forest ecosystem: Results from the ecosystem simulation model. Forest Ecology and Management, 169(1-2): 123-135. doi:  10.1016/S0378-1127(02)00303-1
[55] Shang Z B, He H S, Xi W M et al., 2012. Integrating LANDIS model and a multi-criteria decision-making approach to eva­luate cumulative effects of forest management in the Missouri Ozarks, USA. Ecological Modelling, 229: 50-63. doi: 10. 1016/j.ecolmodel.2011.08.014
[56] Shanin V N, Komarov A S, Mikhailov A V et al., 2011. Modelling carbon and nitrogen dynamics in forest ecosystems of Central Russia under different climate change scenarios and forest management regimes. Ecological Modelling, 222(14): 2262-2275. doi:  10.1016/j.ecolmodel.2010.11.009
[57] Shao Y, Pan J, Yang L et al., 2007. Tests of soil organic carbon density modeled by InTEC model in China's forest ecosystems. Journal of Environmental Management, 85(3): 696-701. doi:  10.1016/j.jenvman.2006.09.006
[58] Simioni G, Ritson P, Kirschbaum M U F et al., 2009. The carbon budget of pinus radiata plantations in south-western Australia under four climate change scenarios. Tree Physiology, 29(9): 1081-1093. doi:  10.1093/treephys/tpp049.
[59] State Forestry Administration, 1999. China Forestry Yearbook: 1998-2003. Beijing: China Forestry Publishing House, 1-783. (in Chinese)
[60] Thomas S C, Malczewski G, Saprunoff M, 2007. Assessing the potential of native tree species for carbon sequestration forestry in Northeast China. Journal of Environmental Management, 85(3): 663-671. doi:  10.1016/j.jenvman.2006.04.027
[61] Thornton P E, Lamarque J F, Rosenbloom N A et al., 2007. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochemical Cycles, 21(4): GB4018. doi:10.1029/2006GB00 2868
[62] Wang S Q, Chen J M, Ju W M et al., 2007. Carbon sinks and sources in China's forests during 1901-2001. Journal of Environmental Management, 85(3): 524-537. doi: 10.1016/j. jenvman.2006.09.019
[63] Wang S Q, Zhou L, Chen J M et al., 2011. Relationships between net primary productivity and stand age for several forest types and their influence on China's carbon balance. Journal of Environmental Management, 92(6): 1651-1662. doi: 10.1016/j. jenvman.2011.01.024
[64] Wang W F, Wei X H, Liao W M et al., 2012. Evaluation of the effects of forest management strategies on carbon sequestration in evergreen broad-leaved (Phoebe bournei) plantation forests using FORECAST ecosystem model. Forest Ecology and Management, in press. doi: 10.1016/j.foreco.2012. 06.044
[65] White A, Cannell M G R, Friend A D, 2000. The high-latitude terrestrial carbon sink: a model analysis. Global Change Biology, 6(2): 227-245. doi:  10.1046/j.1365-2486.2000.00302.x
[66] Xu Y, Gao X J, Giorgi F, 2009. Upgrades to the reliability ensemble averaging method for producing probabilistic climate change projections. Climate Research, 41(1): 61-81. doi:  10.3354/cr00835
[67] Yang L X, Pan J J, Shao Y H et al., 2007. Soil organic carbon decomposition and carbon pools in temperate and sub-tropical forests in China. Journal of Environmental Management, 85(3): 690-695. doi:  10.1016/j.jenvman.2006.09.011
[68] Yao J, He X, Wang A et al., 2012. Influence of Forest Management Regimes on Forest Dynamics in the Upstream Region of the Hun River in Northeastern China. PLoS ONE, 7(6): e39058. doi:  10.1371/journal.pone.0039058
[69] Yu Guirui, He Honglin, Liu Xinan et al., 2004. Atlas for Spa­tia­liz­ed Information of Terrestrial Ecosystem in China: Volume of Clima­tological Elements. Beijing: China Meteorological Press, 1-317. (in Chinese)
[70] Zeeman M J, Hiller R, Gilgen A K et al., 2010. Management and climate impacts on net CO2 fluxes and carbon budgets of three grasslands along an elevational gradient in Switzerland. Agricultural and Forest Meteorology, 150(4): 519-530. doi:  10.1016/j.agrformet.2010.01.011
[71] Zeng N, Qian H, Rödenbeck C et al., 2005. Impact of 1998-2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophysical Research Letters, 32(22): L22709. doi:  10.1029/2005GL024607
[72] Zhang J B, Shangguan T L, Meng Z Q, 2011. Changes in soil carbon flux and carbon stock over a rotation of poplar plantations in northwest China. Ecological research, 26(1): 153-161. doi:  10.1007/s11284-010-0772-5
[73] Zhao M F, Xiang W H, Deng X W, 2013. Application of TRIPLEX model for predicting Cunninghamia lanceolata and Pinus massoniana forest stand production in Hunan Province, southern China. Ecological Modelling, 250: 58-71. doi:  10.1016/j.ecolmodel.2012.10.011
[74] Zhou L X, Conway T J, White J W C et al., 2005. Long-term record of atmospheric CO2 and stable isotopic ratios at Waliguan observatory: Background features and possible drivers, 1991-2002. Global Biogeochemical Cycles, 19(2): GB3021. doi:  10.1029/2004GB002430