[1] An Z S, Kutzbach J E, Prell W L et al., 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 411(6833): 62–66. doi:  10.1038/35075035
[2] An Z S, Wu G X, Li J P et al., 2015. Global monsoon dynamics and climate change. Annual Review of Earth and Planetary Sciences, 43: 29–77. doi:  10.1146/annurev-earth-060313-054623
[3] Balsam W, Ji J F, Chen J, 2004. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility. Earth and Planetary Science Letters, 223(3–4): 335–348. doi:  10.1016/j.jpgl.2004.04.023
[4] Berger A, Loutre M F, 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10(4): 297–317. doi:  10.1016/0277-3791(91)90033-Q
[5] Bond G, Showers W, Cheseby M et al., 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278(5341): 1257–1266. doi:  10.1126/science.278.5341.1257
[6] Chen Xiaoyun, Wu Naiqin, 2008. Relatively warm-humid climate recorded by Mollusk species in the Chinese Loess Plateau during MIS3 and its possible forcing mechanism. Quaternary Sciences, 28(1): 154–161. (in Chinese)
[7] Dean W E, Forester R M, Bardbury J P, 2002. Early Holocene change in atmospheric circulation in the Northern Great Plains: an upstream view of the 8.2 ka cold event. Quaternary Science Reviews, 21(16–17): 1763–1775. doi:  10.1016/S0277-3791(02)00002-1
[8] Dearing J, 1999. Magnetic susceptibility. In: Walden J et al. (eds.). Environmental Magnetism: A Practical Guide, Technical Guide. London: Quaternary Research Association, 35–62.
[9] Deng Shaolin, 2017. Different Responses of Stalagmite Oxygen and Carbon Isotope Records to Holocene Climate. Nanjing: Nanjing Normal University. (in Chinese)
[10] Ding Z L, Xiong S F, Sun J M et al., 1999. Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1–2): 49–66. doi:  10.1016/S0031-0182(99)00034-6
[11] Ding Z L, Derbyshire E, Yang S L et al., 2002. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography, 17(3): 5-1–5-21. doi:  10.1029/2001PA000725
[12] Dixit Y, Hodell D A, Sinha R et al., 2014. Abrupt weakening of the Indian summer monsoon at 8.2 kyr B. P. Earth and Planetary Science Letters, 391: 16–23. doi:  10.1016/j.jpgl.2014.01.026
[13] Emmanouilidis A, Katrantsiotis C, Dotsika E et al., 2022. Holocene paleoclimate variability in the eastern Mediterranean, inferred from the multi-proxy record of Lake Vouliagmeni, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology, 595: 110964. doi:  10.1016/j.palaeo.2022.110964
[14] Fleitmann D, Mudelsee M, Burns S J et al., 2008. Evidence for a widespread climatic anomaly at around 9.2 ka before present. Paleoceanography, 23(1): PA1102. doi:  10.1029/2007pa001519
[15] Guo B H, Peng T J, Feng Z T et al., 2019. Pedogenic components of Xijin loess from the western Chinese loess plateau with implications for the quaternary climate change. Journal of Asian Earth Sciences, 170: 128–137. doi:  10.1016/j.jseaes.2018.11.012
[16] Guo L C, Xiong S F, Yang P et al., 2018a. Holocene environmental changes in the Horqin desert revealed by OSL dating and δ13C analyses of paleosols. Quaternary International, 469: 11–19. doi:  10.1016/j.quaint.2017.06.048
[17] Guo Xuelian, Liu Xiuming, Lü Bin et al., 2011. Comparison of topsoil magnetic properties between the Loess Region in Tianshan Mountains and Loess Plateau, China, and its environmental significance. Chinese Journal of Geophysics, 54(4): 485–495. doi:  10.1002/cjg2.1631
[18] Guo X L, Banerjee S K, Wang R H et al., 2018b. Why magnetite is not the only indicator of past rainfall in the Chinese Loess Plateau? Geophysical Journal International, 213(3): 2128–2137. doi:  10.1093/gji/ggy097
[19] Hamdan M A, Flower R J, Hassan F A et al., 2020. Geochemical and palynological analysis of Faiyum Lake sediments, Egypt: implications for Holocene paleoclimate. Journal of African earth sciences, 167: 103864. doi:  10.1016/j.jafrearsci.2020.103864
[20] Han J M, Lü H Y, Wu N Q et al., 1996. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction. Studia Geophysica et Geodaetica, 40(3): 262–275. doi:  10.1007/BF02300742
[21] Hao Q Z, Guo Z T, 2005. Spatial variations of magnetic susceptibility of Chinese loess for the last 600 kyr: implications for monsoon evolution. Journal of Geophysical Research:Solid Earth, 110(B12): B12101. doi:  10.1029/2005JB003765
[22] International Commission on Stratigraphy, 2018. International Chronostratigraphic Chart. Journal of Stratigraphy, 4: 365–370.
[23] Jiang Mingli, 2009. Grain size analysis and its geological application. Journal of Oil and Gas Technology, 31(1): 161–163. (in Chinese)
[24] Jordanova D, Jordanova N, 2021. Updating the significance and paleoclimate implications of magnetic susceptibility of Holocene loessic soils. Geoderma, 391: 114982. doi:  10.1016/j.geoderma.2021.114982
[25] Kang S G, Du J H, Wang N et al., 2020. Early Holocene weakening and mid- to late Holocene strengthening of the East Asian winter monsoon. Geology, 48(11): 1043–1047. doi:  10.1130/G47621.1
[26] Kato H, Amekawa S, Hori M et al., 2021. Influences of temperature and the meteoric water δ18O value on a stalagmite record in the last deglacial to middle Holocene period from southwestern Japan. Quaternary Science Reviews, 253: 106746. doi:  10.1016/j.quascirev.2020.106746
[27] Lan J H, Xu H, Lang Y C et al., 2020. Dramatic weakening of the East Asian summer monsoon in northern China during the transition from the Medieval Warm Period to the Little Ice Age. Geology, 48(4): 307–312. doi:  10.1130/G46811.1
[28] Li P, Zhang C X, Wu H B et al., 2022. Geochemical characteristics of Holocene loess-paleosol sequences in central Chinese Loess Plateau and their implications for East Asian monsoon evolution. Quaternary International, 616: 99–108. doi:  10.1016/j.quaint.2021.10.017
[29] Li Y R, Zhang W W, Aydin A et al., 2018. Formation of calcareous nodules in loess-paleosol sequences: reviews of existing models with a proposed new “per evapotranspiration model”. Journal of Asian Earth Sciences, 154: 8–16. doi:  10.1016/j.jseaes.2017.12.002
[30] Liu J, Wang B, Ding Q H et al., 2009. Centennial variations of the global monsoon precipitation in the last millennium: results from ECHO-G model. Journal of Climate, 22(9): 2356–2371. doi:  10.1175/2008JCLI2353.1
[31] Liu Xiuming, An Zhisheng, Rolph T et al., 2001. Magnetic properties of the Tertiary red clay from Gansu. Science in China Series D:Earth Sciences, 44(7): 635–651. doi:  10.1007/BF02875337
[32] Maher B A, 2016. Palaeoclimatic records of the loess/palaeosol sequences of the Chinese Loess Plateau. Quaternary Science Reviews, 154: 23–84. doi:  10.1016/j.quascirev.2016.08.004
[33] Orgeira M J, Egli R, Compagnucci R H, 2011. A quantitative model of magnetic enhancement in Loessic soils. In: Petrovský E, Ivers D, Harinarayana T et al. (eds. ). The Earth’s Magnetic Interior. Dordrecht: Springer, 361–397. doi:  10.1007/978-94-007-0323-0_25
[34] Senra E O, Schaefer C E, Corrêa G R et al., 2019. Holocene pedogenesis along a chronotoposequence of soils from the Altiplano to the Cordillera Real, Bolivian Andes. Catena, 178: 141–153. doi:  10.1016/j.catena.2019.03.012
[35] Shen J, Liu X Q, Wang S M et al., 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18, 000 years. Quaternary International, 136(1): 131–140. doi:  10.1016/j.quaint.2004.11.014
[36] Shi Yafeng, Kong Zhaozheng, Wang Sumin et al., 1994. The climatic fluctuation and important events of Holocene megathermal in China. Science in China (Series B), 37(3): 353–365. (in Chinese)
[37] Song Y, Hao Q Z, Ge J Y et al. , 2014. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau. Quaternary International, 334–335: 119–131. doi:  10.1016/j.quaint.2013.12.010
[38] Stuut J, 2007. Grain-size records at ODP Site 1146 from the northern South China Sea: implications on the East Asian monsoon evolution since 20 Ma. Science China Earth Sciences, 10: 1536–1547.
[39] Sun D H, Bloemendal J, Rea D K et al., 2004. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. Catena, 55(3): 325–340. doi:  10.1016/S0341-8162(03)00109-7
[40] Sun Xiaohong, Zhao Yan, Li Quan, 2017. Holocene peatland development and vegetation changes in the Zoige Basin, eastern Tibetan Plateau. Science China Earth Sciences, 60(10): 1826–1837. doi:  10.1007/s11430-017-9086-5
[41] Thomas E R, Wolff E W, Mulvaney R et al., 2007. The 8.2 ka event from Greenland ice cores. Quaternary Science Reviews, 26(1–2): 70–81. doi:  10.1016/j.quascirev.2006.07.017
[42] Verheyden S, Nader F H, Cheng H J et al., 2008. Paleoclimate reconstruction in the Levant region from the geochemistry of a Holocene stalagmite from the Jeita Cave, Lebanon. Quaternary Research, 70: 368–381. doi:  10.1016/j.yqres.2008.05.004
[43] Vinther B M, Clausen H B, Johnsen S J et al., 2006. A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research:Atmospheres, 111(D13): D13102. doi:  10.1029/2005jd006921
[44] Wang Haibin, Chen Fahu, Zhang Jiawu, 2002. Environmental significance of grain size of loess-paleosol sequence in western part of Chinese Loess Plateau. Journal of Desert Research, 22(1): 21–26. (in Chinese)
[45] Wang H P, Chen J H, Zhang X J et al., 2014. Palaeosol development in the Chinese Loess Plateau as an indicator of the strength of the East Asian summer monsoon: evidence for a mid-Holocene maximum. Quaternary International, 334–335: 155–164. doi:  10.1016/j.quaint.2014.03.013
[46] Wang Y J, Cheng H, Edwards R L et al., 2005. The Holocene Asian monsoon: links to solar changes and North Atlantic climate. Science, 308(5723): 854–857. doi:  10.1126/science.1106296
[47] Wang Y J, Cheng H, Edwards R L et al., 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224, 000 years. Nature, 451(7182): 1090–1093. doi:  10.1038/nature06692
[48] Xue J T, Dang X Y, Tang C Y et al., 2016. Fidelity of plant-wax molecular and carbon isotope ratios in a Holocene paleosol sequence from the Chinese Loess Plateau. Organic Geochemistry, 101: 176–183. doi:  10.1016/j.orggeochem.2016.09.004
[49] Yan H, Wei W, Soon W et al., 2015. Dynamics of the intertropical convergence zone over the western Pacific during the Little Ice Age. Nature Geoscience, 8(4): 315–320. doi:  10.1038/NGEO2375
[50] Zan J B, Fang X M, Zhang W L et al., 2018. A new record of late Pliocene-early Pleistocene aeolian loess-red clay deposits from the western Chinese Loess Plateau and its palaeoenvironmental implications. Quaternary Science Reviews, 186: 17–26. doi:  10.1016/j.quascirev.2018.02.010
[51] Zhang W C, Yan H, Cheng P et al., 2016. Peatland development and climate changes in the Dajiuhu basin, central China, over the last 14, 100 years. Quaternary International, 425: 273–281. doi:  10.1016/j.quaint.2016.06.039
[52] Zhao G Y, Liu X M, Chen Q et al., 2013. Paleoclimatic evolution of Holocene loess and discussion of the sensitivity of magnetic susceptibility and median diameter. Quaternary International, 296: 160–167. doi:  10.1016/j.quaint.2012.06.015
[53] Zhao J B, Ma Y D, Cao J J et al., 2020. Holocene pedostratigraphic records from the southern Chinese Loess Plateau and their implications for the effects of climate on human civilization. Catena, 187: 104410. doi:  10.1016/j.catena.2019.104410
[54] Zhu Xiaomin, 2020. Sedimentary Petrology. 5th ed. Beijing: Petroleum Industry Press. (in Chinese)