[1] Abramoff R Z, Finzi A C, 2015. Are above- and below-ground phenology in sync. New Phytologist, 205(3): 1054–1061. doi:  10.1111/nph.13111
[2] Ahlstrom A, Raupach M R, Schurgers G et al., 2015. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348(6237): 895–899. doi:  10.1126/science.aaa1668
[3] Atkinson P M, Jeganathan C, Dash J et al., 2012. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 123: 400–417. doi:  10.1016/j.rse.2012.04.001
[4] Atzberger C, Eilers P H C, 2011. A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America. International Journal of Digital Earth, 4(5): 365–386. doi:  10.1080/17538947.2010.505664
[5] Baldocchi D, 2008. Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56(1): 1–26. doi:  10.1071/bt07151
[6] Bao G, Chen J Q, Chopping M et al., 2019. Dynamics of net primary productivity on the Mongolian Plateau: joint regulations of phenology and drought. International Journal of Applied Earth Observation and Geoinformation, 81: 85–97. doi:  10.1016/j.jag.2019.05.009
[7] Beck P S A, Goetz S J, 2011. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environmental Research Letters, 6(4): 049501. doi:  10.1088/1748-3182/6/4/049501
[8] Bestelmeyer B T, Okin G S, Duniway M C et al., 2015. Desertification, land use, and the transformation of global drylands. Frontiers in Ecology and the Environment, 13(1): 28–36. doi:  10.1890/140162
[9] Buermann W, Bikash P R, Jung M et al., 2013. Earlier springs decrease peak summer productivity in North American boreal forests. Environmental Research Letters, 8(2): 024027. doi:  10.1088/1748-9326/8/2/024027
[10] Caparros-Santiago J A, Rodriguez-Galiano V, Dash J, 2021. Land surface phenology as indicator of global terrestrial ecosystem dynamics: A systematic review. ISPRS Journal of Photogrammetry and Remote Sensing, 171: 330–347. doi:  10.1016/j.isprsjprs.2020.11.019
[11] Chen J M, Ju W M, Ciais P et al., 2019. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nature Communications, 10(1): 4259. doi:  10.1038/s41467-019-12257-8
[12] Chen X Q, Wang L, Inouye D, 2017. Delayed response of spring phenology to global warming in subtropics and tropics. Agricultural and Forest Meteorology, 234−235: 222–235. doi:  10.1016/j.agrformet.2017.01.002
[13] Du Q, Liu H Z, Li Y H et al. , 2019. The effect of phenology on the carbon exchange process in grassland and maize cropland ecosystems across a semiarid area of China. Science of the Total Environment, 695(133868). doi:  10.1016/j.scitotenv.2019.133868.
[14] Duveneck M J, Thompson J R, 2017. Climate change imposes phenological trade-offs on forest net primary productivity. Journal of Geophysical Research-Biogeosciences, 122(9): 2298–2313. doi:  10.1002/2017jg004025
[15] Dymond C C, Beukema S, Nitschke C R et al., 2016. Carbon sequestration in managed temperate coniferous forests under climate change. Biogeosciences, 13(6): 1933–1947. doi:  10.5194/bg-13-1933-2016
[16] Eilers P H C, 2003. A perfect smoother. Analytical Chemistry, 75(14): 3631–3636. doi:  doi:10.1021/ac034173t
[17] Feng X M, Fu B J, Piao S et al., 2016. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 6(11): 1019–1022. doi:  10.1038/nclimate3092
[18] Gill A L, Gallinat A S, Sanders-DeMott R et al., 2015. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies. Annals of Botany, 116(6): 875–888. doi:  10.1093/aob/mcv055
[19] Girardin C A J, Malhi Y, Doughty C E et al., 2016. Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation. Global Biogeochemical Cycles, 30(5): 700–715. doi:  10.1002/2015gb005270
[20] Gou Jiaojiao, Wang Fei, Jin Kai et al., 2018. Cooling effect induced by vegetation restoration on the Loess Plateau. Acta Ecologica Sinica, 38(11): 3970–3978. (in Chinese)
[21] Gu L H, Post W M, Baldocchi D et al. 2003. Phenology of Vegetation Photosynthesis.In: Schwartz M D (ed). Phenology: an Integrative Environmental Science. Dordrecht: Springer, 467–485.
[22] He Yongtao, Li Wenhua, Lang Haiou, 2009. Study on the Characteristics of Precipitation Resources and the Afforestation Suitability in the Loess Plateau. Arid Zone Research, 26(3): 406–412. (in Chinese)
[23] Huxman T E, Snyder K A, Tissue D et al., 2004. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141(2): 254–268. doi:  10.1007/s00442-004-1682-4
[24] IPCC. 2013. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
[25] Jeong S J, Ho C H, Choi S D et al. , 2013. Satellite Data-Based Phenological Evaluation of the Nationwide Reforestation of South Korea. Plos One, 8(3): e58900. doi:  10.1371/journal.pone.0058900.
[26] Jiang X D, Shen W, Bai X Y, 2019. Response of net primary productivity to vegetation restoration in Chinese Loess Plateau during 1986−2015. Plos One, 14(7): e0219270. doi:  doi:10.1371/journal.pone.0219270
[27] Kafaki S B, Mataji A, Hashemi S A, 2009. Monitoring growing season length of deciduous broad leaf forest derived from satellite data in Iran. American Journal of Environmental Sciences, 5(5): 647–652. doi:  10.3844/ajessp.2009.647.652
[28] Kang W, Wang T, Liu S, 2018. The Response of vegetation phenology and productivity to drought in semi-arid regions of Northern China. Remote Sensing, 10(5): 727. doi:  10.3390/rs10050727
[29] Kang X, Hao Y, Cui X et al., 2016. Variability and changes in climate, phenology, and gross primary production of an alpine wetland ecosystem. Remote Sensing, 8(5): 391. doi:  10.3390/rs8050391
[30] Keenan T F, Williams C A, 2018. The terrestrial carbon sink. Annual Review of Environment and Resources. doi:  10.1146/annurev-environ-102017-030204.
[31] Kharouba H M, Ehrlén J, Gelman A et al., 2018. Global shifts in the phenological synchrony of species interactions over recent decades. Proceedings of the National Academy of Sciences of the United States of America, 115(20): 5211–5216. doi:  10.1073/pnas.1714511115
[32] Kong D X, Miao C Y, Borthwick A G L et al., 2018. Spatiotemporal variations in vegetation cover on the Loess Plateau, China, between 1982 and 2013: possible causes and potential impacts. Environmental Science and Pollution Research, 25(14): 13633–13644. doi:  10.1007/s11356-018-1480-x
[33] Lai C G, Li J, Wang Z L et al. , 2018. Drought-induced reduction in net primary productivity across mainland China from 1982 to 2015. Remote Sensing, 10(9): 1433. doi:  10.3390/rs10091433.
[34] Li J, Wang Z L, Lai C G et al., 2018. Response of net primary production to land use and land cover change in mainland China since the late 1980s. Science of the Total Environment, 639: 237–247. doi:  10.1016/j.scitotenv.2018.05.155
[35] Li X N, Song H L, Li W et al., 2010. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering, 36(4): 382–390. doi:  10.1016/j.ecoleng.2009.11.004
[36] Liu Guobin, Shangguan Zhouping, Yao Wenyi et al., 2017. Ecological effects of soil conservation in Loess Plateau. Bulletin of the Chinese Academy of Sciences, 32(1): 11–19. (in Chinese)
[37] Liu Jiyuan, Zhang Zengxiang, Xu Xinliang et al., 2010. Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20(4): 483–494. doi:  10.1007/s11442-010-0483-4
[38] Liu X P, Pei F S, Wen Y Y et al., 2019a. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nature Communications, 10(1): 5558. doi:  10.1038/s41467-019-13462-1
[39] Liu Z J, Liu Y S, Li Y R, 2019. Extended warm temperate zone and opportunities for cropping system change in the Loess Plateau of China. International Journal of Climatology, 39(2): 658–669. doi:  10.1002/joc.5833
[40] Ma Z H, Peng C H, Zhu Q A et al., 2012. Regional drought-induced reduction in the biomass carbon sink of Canada's boreal forests. Proceedings of the National Academy of Sciences of the United States of America, 109(7): 2423–2427. doi:  10.1073/pnas.1111576109
[41] Peñuelas J, Filella I, 2001. Responses to a Warming World. Science, 294(5543): 793–795. doi:  10.1126/science.1066860
[42] Piao S L, Ciais P, Friedlingstein P et al., 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451(7174): 49–52. doi:  10.1038/nature06444
[43] Piao S L, Fang J Y, Zhou L M et al., 2006. Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 12(4): 672–685. doi:  10.1111/j.1365-2486.2006.01123.x
[44] Piao S L, Friedlingstein P, Ciais P et al. , 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles, 21(3). doi:  10.1029/2006gb002888.
[45] Piao S L, Liu Q, Chen A P et al., 2019. Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 25(6): 1922–1940. doi:  10.1111/gcb.14619
[46] Piao S L, Liu Z, Wang Y L et al. , 2018. On the causes of trends in the seasonal amplitude of atmospheric CO2. Global Change Biology, 24(2): 608−616.
[47] Potter C S, Randerson J T, Field C B et al., 1993. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7(4): 811–841. doi:  10.1029/93GB02725
[48] Poulter B, Frank D, Ciais P et al., 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509(7502): 600–603. doi:  10.1038/nature13376
[49] Reich P B, Sendall K M, Stefanski A et al. , 2016. Boreal and temperate trees show strong acclimation of respiration to warming. Nature, 531(7596): 633−636. doi:  10.1038/nature17142.
[50] Richardson A D, Black T A, Ciais P et al., 2010. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society B-Biological Sciences, 365(1555): 3227–3246. doi:  10.1098/rstb.2010.0102
[51] Richardson A D, Keenan T F, Migliavacca M et al., 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 169: 156–173. doi:  10.1016/j.agrformet.2012.09.012
[52] Schwartz M, Ahas R, Aasa A, 2006. Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology, 12(2): 343–351. doi:  10.1111/j.1365-2486.2005.01097.x
[53] Shen M G, Tang Y H, Chen J et al., 2011. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 151(12): 1711–1722. doi:  10.1016/j.agrformet.2011.07.003
[54] Smith W K, Dannenberg M P, Yan D et al., 2019. Remote sensing of dryland ecosystem structure and function: Progress, challenges, and opportunities. Remote Sensing of Environment, 233: 111401. doi:  10.1016/j.rse.2019.111401
[55] Song Fuqiang, Kang Muyi, Chen Yaru et al., 2009. Estimation of vegetation net primary productivity on North Shaanxi Loess Plateau. Chinese Journal of Ecology, 28(11): 2311–2318. (in Chinese)
[56] Suni T, Berninger F, Markkanen T et al. , 2003. Interannual variability and timing of growing-season CO2 exchange in a boreal forest. Journal of Geophysical Research: Atmospheres, 108(D9): 4265. doi:  10.1029/2002JD002381.
[57] Wang S Y, Zhang B, Yang Q C et al., 2017. Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China. Agricultural and Forest Meteorology, 232: 235–246. doi:  10.1016/j.agrformet.2016.08.020
[58] Wang Y Q, Luo Y, hafeeque M, 2019. Interpretation of vegetation phenology changes using daytime and night-time temperatures across the Yellow River Basin, China. Science of the Total Environment, 693: 133553. doi:  10.1016/j.scitotenv.2019.07.359
[59] White M A, de Beurs K M, Didan K et al., 2009. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982−2006. Global Change Biology, 15(10): 2335–2359. doi:  10.1111/j.1365-2486.2009.01910.x
[60] Vitasse Y, Delzon S, Dufrêne E et al., 2009. Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses. Agricultural and Forest Meteorology, 149(5): 735–744. doi:  10.1016/j.agrformet.2008.10.019
[61] Xie Baoni, Qin Zhanfei, Wang Yang et al., 2014. Spatial and temporal variation in terrestrial net primary productivity on Chinese Loess Plateau and its influential factors. Transactions of the Chinese Society of Agricultural Engineering, 30(11): 244–253. (in Chinese)
[62] Xin Zhongbao, Xu Jiongxin, and Wei Zheng, 2007. Effects of Climate change and Human activities on vegetation cover change in the Loess Plateau. Scientia Sinica(Terrae), 37(11): 1504–1514. (in Chinese)
[63] Yu H Y, Luedeling E, Xu J C, 2010. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107(51): 22151–22156. doi:  10.1073/pnas.1012490107
[64] Zhang X L, Wu S, Yan X D et al., 2017. A global classification of vegetation based on NDVI, rainfall and temperature. International Journal of Climatology, 37(5): 2318–2324.
[65] Zhao G S, Shi P L, Zong N et al., 2017. Declining precipitation enhances the effect of warming on phenological variation in a semiarid tibetan meadow steppe. Journal of Resources and Ecology, 8(1): 50–56. doi:  10.5814/j.issn.1674-764x.2017.01.007
[66] Zhao M S, Running S W, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940–943. doi:  10.1126/science.1192666
[67] Zhou L M, Tucker C J, Kaufmann R K et al.,, 2001. Variation in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research, 106(D17): 20069–20084. doi:  10.1029/2000JD000115
[68] Zhu Wenquan, Pan Yaozhong, Zhang Jinshui, 2007. Estimation of net primary productivity of chinese terrestrial vegetation based on remote sensing. Journal of Plant Ecology, 31(3): 413–424. (in Chinese)