[1] Arnold J G, Fohrer N, 2005. SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes:An International Journal, 19: 563–572. doi:  10.1002/hyp.5611
[2] Bai Y, Chen Y, Alatalo J M et al., 2020. Scale effects on the relationships between land characteristics and ecosystem services-a case study in Taihu Lake Basin, China. Science of the Total Environment, 716: 137083. doi:  10.1016/j.scitotenv.2020.137083
[3] Bai Y, Ochuodho T O, Yang J, 2019. Impact of land use and climate change on water-related ecosystem services in Kentucky, USA. Ecological Indicators, 102: 51–64. doi:  10.1016/j.ecolind.2019.01.079
[4] Baker T J, Miller S N, 2013. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. Journal of Hydrology, 486: 100–111. doi:  10.1016/j.jhydrol.2013.01.041
[5] Bastola S, Seong Y J, Lee S H et al., 2019. Water yield estimation of the Bagmati basin of Nepal using GIS based InVEST model. Journal of Korea Water Resources Association, 52: 637–645. doi:  10.3741/JKWRA.2019.52.9.637
[6] Berghuijs W R, Larsen J R, Van Emmerik T H et al., 2017. A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors. Water Resources Research, 53: 8475–8486. doi:  10.1002/2017WR021593
[7] Biao Z, Wenhua L, Gaodi X et al., 2010. Water conservation of forest ecosystem in Beijing and its value. Ecological Economics, 69: 1416–1426. doi:  10.1016/j.ecolecon.2008.09.004
[8] Brockerhoff E G, Barbaro L, Castagneyrol B et al., 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 26: 3005–3035. doi:  10.1007/s10531-017-1453-2
[9] Chen J, Wang D, Li G et al., 2020. Spatial and temporal heterogeneity analysis of water conservation in Beijing-Tianjin-Hebei urban agg lomeration based on the geodetector and spatial elastic coefficient trajectory models. GeoHealth, 4(8): e2020GH000248. doi:  10.1029/2020GH000248
[10] Cong W, Sun X, Guo H et al., 2020. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecological Indicators, 112: 106089. doi:  10.1016/j.ecolind.2020.106089
[11] Dai Erfu, Wang Yahui, 2020. Spatial heterogeneity and driving mechanisms of water yield service in the Hengduan Mountain region. Acta Geographica Sinica, 75(3): 607–619. (in Chinese)
[12] Delphin S, Escobedo F, Abd-Elrahman A et al., 2016. Urbanization as a land use change driver of forest ecosystem services. Land Use Policy, 54: 188–199. doi:  10.1016/j.landusepol.2016.02.006
[13] Ding H, Hao X M, 2021. Spatiotemporal change and drivers analysis of desertification in the arid region of northwest China based on geographic detector. Environmental Challenges, 4: 100082. doi:  10.1016/j.envc.2021.100082
[14] Donohue R J, Roderick M L, McVicar T R, 2012. Roots, storms and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. Journal of Hydrology, 436: 35–50. doi:  10.1016/j.jhydrol.2012.02.033
[15] Fang L, Wang L, Chen W et al., 2021. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. Journal of Cleaner Production, 314: 127995. doi:  10.1016/j.jclepro.2021.127995
[16] Gao J, Li F, Gao H et al., 2017. The impact of land-use change on water-related ecosystem services: a study of the Guishui River Basin, Beijing, China. Journal of Cleaner Production, 163: S148–S155. doi:  10.1016/j.jclepro.2016.01.049
[17] Geri F, Amici V, Rocchini D, 2010. Human activity impact on the heterogeneity of a Mediterranean landscape. Applied Geography, 370–379. doi:  10.1016/j.apgeog.2009.10.006
[18] Golmohammadi G, Prasher S, MadaniA et al., 2014. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology, 1: 20–39. doi:  10.3390/hydrology1010020
[19] Gong Shihan, Xiao Yang, Zhang Lu et al., 2017. Driving forces and their effects on water conservation services in forest ecosystems in China. Chinese Geographical Science, 27: 216–228. doi:  10.1007/s11769-017-0860-3
[20] Hamel P, Guswa A J, 2015. Uncertainty analysis of a spatially explicit annual water-balance model: case study of the Cape Fear basin, North Carolina. Hydrology and Earth System Sciences, 19: 839–853. doi:  10.5194/hess-19-839-2015
[21] Hu W, Li G, Gao Z et al., 2020. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Science of the Total Environment, 733: 139423. doi:  10.1016/j.scitotenv.2020.139423
[22] Hu W, Li G, Li Z, 2021. Spatial and temporal evolution characteristics of the water conservation function and its driving factors in regional lake wetlands-Two types of homogeneous lakes as examples. Ecological Indicators, 130: 108069. doi:  10.1016/j.ecolind.2021.108069
[23] Jia G, Hu W, Zhang B et al., 2022. Assessing impacts of the Ecological Retreat project on water conservation in the Yellow River Basin. Science of the Total Environment, 828: 154483. doi:  10.1016/j.scitotenv.2022.154483
[24] Jia X, Fu B, Feng X et al., 2014. The tradeoff and synergy between ecosystem services in the Grain-for-Green areas in Northern Shaanxi, China. Ecological Indicators, 43: 103–113. doi:  10.1016/j.ecolind.2014.02.028
[25] Lang Y, Song W, Zhang Y, 2017. Responses of the water-yield ecosystem service to climate and land use change in Sancha River Basin, China. Physics and Chemistry of the Earth, Parts A/B/C, 101: 102–111. doi:  10.1016/j.pce.2017.06.003
[26] Leh M D, Matlock M D, Cummings E C et al., 2013. Quantifying and mapping multiple ecosystem services change in West Africa. Agriculture, Ecosystems & Eenvironment, 165: 6–18. doi:  10.1016/j.agee.2012.12.001
[27] Li Junhua, Zhou Kaichun, Xie Binggeng et al., 2021. Impact of landscape pattern change on water-related ecosystem services: Comprehensive analysis based on heterogeneity perspective. Ecological Indicators, 133–108372. doi:  10.1016/j.ecolind.2021.108372
[28] Li Mingyue, Liang Dong, Xia Jun et al., 2021. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. Journal of Environmental Management, 286: 112212. doi:  10.1016/j.jenvman.2021.112212
[29] Li Zhihui, Xia Jun, Deng Xiangzheng, 2021. Multilevel modelling of impacts of human and natural factors on ecosystem services change in an oasis, Northwest China. Resources, Conservation and Recycling, 169: 105474. doi:  10.1016/j.resconrec.2021.105474
[30] Liang J, Li S, Li X et al., 2021. Trade-off analyses and optimization of water-related ecosystem services (WRESs) based on land use change in a typical agricultural watershed, southern China. Journal of Cleaner Production, 279: 123851. doi:  10.1016/j.jclepro.2020.123851
[31] Liu N, Sun P, Caldwell P V et al., 2020. Trade-off between watershed water yield and ecosystem productivity along elevation gradients on a complex terrain in southwestern China. Journal of Hydrology, 590: 125449. doi:  10.1016/j.jhydrol.2020.125449
[32] Núñez D, Nahuelhual L, Oyarzún C, 2006. Forests and water: The value of native temperate forests in supplying water for human consumption. Ecological Economics, 58: 606–616. doi:  10.1016/j.ecolecon.2005.08.010
[33] Pei H W, Liu M Z, Shen Y J et al., 2022. Quantifying impacts of climate dynamics and land-use changes on water yield service in the agro-pastoral ecotone of northern China. Science of the Total Environment, 809: 151153. doi:  10.1016/j.scitotenv.2021.151153
[34] Ponette-González A G, Weathers K C, Curran L M, 2010. Water inputs across a tropical montane landscape in Veracruz, Mexico: synergistic effects of land cover, rain and fog seasonality, and interannual precipitation variability. Global Change Biology, 16: 946–963. doi:  10.1111/j.1365-2486.2009.01985.x
[35] Peng J, Liu Y, Wu, J et al., 2015. Linking ecosystem services and landscape patterns to assess urban ecosystem health: A case study in Shenzhen City, China. Landscape and Urban Planning, 143: 56–68. doi:  10.1016/j.landurbplan.2015.06.007
[36] Redhead J, Stratford C, Sharps K et al., 2016. Empirical validation of the InVEST water yield ecosystem service model at a national scale. Science of the Total Environment, 569: 1418–1426. doi:  10.1016/j.scitotenv.2016.06.227
[37] Reis V, Hermoso V, Hamilton S K et al., 2017. A global assessment of inland wetland conservation status. Bioscience, 67: 523–533. doi:  10.1093/biosci/bix045
[38] Sharp R, Tallis H, Ricketts T et al., 2016. InVEST + VERSION + User’s guide. The natural capital project. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.
[39] Shi Jinhao, Jin Ri, Zhu Weihong, 2022. Quantification of Effects of Natural Geographical Factors and Landscape Patterns on Non-point Source Pollution in Watershed Based on Geodetector: Burhatong River Basin, Northeast China as An Example. Chinese Geographical Science, 32: 707–723. doi:  10.1007/s11769-022-1295-z
[40] Su C H, Fu B J, 2013. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Global and Planetary Change, 101: 119–128. doi:  10.1016/j.gloplacha.2012.12.014
[41] Sun G, Caldwell P, Noormets A et al., 2011. Upscaling key ecosystem functions across the conterminous United States by a water‐centric ecosystem model. Journal of Geophysical Research:Biogeosciences, 116. doi:  10.1029/2010JG001573
[42] Sun Yanhong, Zhang Honghong, Cheng Jinhua et al., 2006. Soil characteristics and water conservation of different forest types in Jinyun Mountain. Journal of Soil and Water Conservation, 20: 106–109. (in Chinese)
[43] Tasser E, Tappeiner U, 2002. Impact of land use changes on mountain vegetation. Applied Vegetation Science, 5: 173–184. doi:  10.1111/j.1654-109X.2002.tb00547.x
[44] Thompson J, Sørenson H R, Gavin H et al., 2004. Application of the coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast England. Journal of Hydrology, 293: 151–179. doi:  10.1016/j.jhydrol.2004.01.017
[45] Vigerstol K L, Aukema J E, 2011. A comparison of tools for modeling freshwater ecosystem services. Journal of Environmental Management, 92: 2403–2409. doi:  10.1016/j.jenvman.2011.06.040
[46] Vose J M, Sun G, Ford C R et al., 2011. Forest ecohydrological research in the 21st century: what are the critical needs. Ecohydrology, 4(2): 146–158. doi:  10.1002/eco.193
[47] Wang J F, Li X H, Christakos G et al., 2010. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. International Journal of Geographical Information Science, 24: 107–127. doi:  10.1080/13658810802443457
[48] Wang Jinfeng, Xu Chengdong, 2017. Geodetector: Principle and prospective. Geographica Sinica, 72: 116–134. (in Chinese)
[49] Wang S, Zhang B, Wang S, 2021. Dynamic changes in water conservation in the Beijing-Tianjin Sandstorm Source Control Project Area: A case study of Xilin Gol League in China. Journal of Cleaner Production, 293: 126054. doi:  10.1016/j.jclepro.2021.126054
[50] Wang Tianming, Feng Limin, Yang Haitao et al., 2020. An introduction to Long-term Tiger-Leopard Observation Network based on camera traps in Northeast China. Biodiversity Science, 28: 1059. (in Chinese)
[51] Wang Xiaoxue, Shen Huitao, Li Xuyong et al., 2013. Concepts, processes and quantification methods of the forest water conservation at the multiple scales. Acta Ecologica Sinica, 33: 1019–1030. (in Chinese)
[52] Xiao Yang, Ouyang Zhiyun, 2019. Spatial-temporal patterns and driving forces of water retention service in China. Chinese Geographical Science, 29: 100–111. doi:  10.1007/s11769-018-0984-0
[53] Xu H J, Zhao C Y, Wang X P et al., 2022. Spatial differentiation of determinants for water conservation dynamics in a dryland mountain. Journal of Cleaner Production, 132574. doi:  10.1016/j.jclepro.2022.132574
[54] Yang D, Liu W, Tang L et al., 2019. Estimation of water provision service for monsoon catchments of South China: Applicability of the InVEST model. Landscape and Urban Planning, 182: 133–143. doi:  10.1016/j.landurbplan.2018.10.011
[55] Yang S, Bai Y, Alatalo J M et al., 2021. Spatio-temporal changes in water-related ecosystem services provision and trade-offs with food production. Journal of Cleaner Production, 286: 125316. doi:  10.1016/j.jclepro.2020.125316
[56] Yu S, Shang J, Zhao J et al., 2003. Factor analysis and dynamics of water quality of the Songhua River, Northeast China. Water, Air, and Soil Pollution, 144(1): 159–169. doi:  10.1023/A:1022960300693
[57] Zhan Dongsheng, Zhang Wenzhong, Yu Jianhui et al., 2015. Analysis of influencing mechanism of residents’ livability satisfaction in Beijing using geographical detector. Progress in Geography, 34: 966–975. (in Chinese)
[58] Zhang L, Dawes W, Walker G, 2001. Response of mean annual-evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 37(3): 701–708. doi:  10.1029/2000WR900325
[59] Zhang P, Wang J, Jin R et al., 2022. Changes of water yield in Tumen River Basin, China: trade-offs between precipitation and actual evapotranspiration. Arabian Journal of Geosciences, 15: 1–14. doi:  10.1007/s12517-022-10447-1
[60] Zhang L, Hickel K, Dawes W et al., 2004. A rational function approach for estimating mean annual evapotranspiration. Water Resources Research, 40(2). doi:  10.1029/2003WR002710
[61] Zhao Kuiyi, He Chiquan, 2001. The wetland types, functions and conservation in China. Chinese Geographical Science, 11(4): 300–305. doi:  10.1007/s11769-001-0044-y