[1] Amici V, Eggers B, Geri F et al., 2015. Habitat suitability and landscape structure:a maximum entropy approach in a medi-terranean area. Landscape Research, 40(2):208-225. doi: 10.1080/01426397.2013.774329
[2] Baker K, Lambdon P, Jones E et al., 2014. Rescue, ecology and conservation of a rediscovered island endemic fern (Ano-gramma ascensionis):ex situ methodologies and a road map for species reintroduction and habitat restoration. Botanical Journal of the Linnean Society, 174(3):461-477. doi: 10.1111/boj.12131
[3] Balbontín J, 2005. Identifying suitable habitat for dispersal in Bonelli's eagle:an important issue in halting its decline in Europe. Biological Conservation, 126(1):74-83. doi: 10.1016/j.biocon.2005.04.023
[4] Baldwin R A, 2009. Use of maximum entropy modeling in wildlife research. Entropy, 11(4):854-866. doi: 10.3390/e11040854
[5] Banks J A, 1999. Gametophyte development in ferns. Annual Review of Plant Physiology and Plant Molecular Biology, 50:163-186. doi: 10.1146/annurev.arplant.50.1.163
[6] Benito Garzón M, Blazek R, Neteler M et al., 2006. Predicting habitat suitability with machine learning models:the potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecological Modelling, 197(3-4):383-393. doi:10.1016/j.ecolmodel. 2006.03.015
[7] Booth T H, Nix H A, Busby J R et al., 2014. BIOCLIM:the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions, 20(1):1-9. doi: 10.1111/ddi.12144
[8] Booth T H, 2018. Why understanding the pioneering and contin-uing contributions of BIOCLIM to species distribution model-ling is important. Austral Ecology, 43(8):852-860. doi: 10.1111/aec.12628
[9] Boria R A, Olson L E, Goodman S M et al., 2014. Spatial filtering to reduce sampling bias can improve the performance of eco-logical niche models. Ecological Modelling, 275:73-77. doi: 10.1016/j.ecolmodel.2013.12.012
[10] Brummitt N, Bachman S P, Aletrari E et al., 2015. The sampled red list index for plants, phaseⅡ:ground-truthing specimen-based conservation assessments. Philosophical Transactions of the Royal Society B:Biological Sciences, 370(1662):20140015. doi: 10.1098/rstb.2014.0015
[11] Brummitt N, Aletrari E, Syfert M M et al., 2016. Where are threatened ferns found? Global conservation priorities for pteridophytes. Journal of Systematics and Evolution, 54(6):604-616. doi: 10.1111/jse.12224
[12] Bruni I, Gentili R, De Mattia F et al., 2013. A multi-level analysis to evaluate the extinction risk of and conservation strategy for the aquatic fern Marsilea quadrifolia L. in Europe. Aquatic Botany, 111:35-42. doi: 10.1016/j.aquabot.2013.08.005
[13] Campbell C A, Hilderbrand R H, 2017. Using maximum entropy to predict suitable habitat for the endangered dwarf wedge-mussel in the Maryland Coastal Plain. Aquatic Conservation:Marine and Freshwater Ecosystems, 27(2):462-475. doi: 10.1002/aqc.2699
[14] Canestraro B K, Moran R C, Watkins J E, 2014. Reproductive and physiological ecology of climbing and terrestrial Polybotrya (Dryopteridaceae) at the La Selva biological station, Costa Rica. International Journal of Plant Sciences, 175(4):432-441. doi: 10.1086/675576
[15] Carnaval A C, Moritz C, 2008. Historical climate modelling pre-dicts patterns of current biodiversity in the Brazilian Atlantic forest. Journal of Biogeography, 35(7):1187-1201. doi: 10.1111/j.1365-2699.2007.01870.x
[16] Cook C N, Morgan D G, Marshall D J, 2010. Reevaluating suita-ble habitat for reintroductions:lessons learnt from the eastern barred bandicoot recovery program. Animal Conservation, 13(2):184-195. doi: 10.1111/j.1469-1795.2009.00320.x
[17] Cui Shaopeng, Luo Xiao, Li Chunwang et al., 2018. Predicting the potential distribution of white-lipped deer using the MaxEnt model. Biodiversity Science, 26(2):171-176. (in Chinese)
[18] Davies A J, Wisshak M, Orr J C et al., 2008. Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep Sea Research Part I:Oceanographic Research Papers, 55(8):1048-1062. doi: 10.1016/j.dsr.2008.04.010
[19] Dong Shiyong, Zuo Zhengyu, Yan Yuehong et al., 2017. Red list assessment of lycophytes and ferns in China. Biodiversity Sci-ence, 25(7):765-773. (in Chinese)
[20] Dong Yuan, Wang Jianzhong, 1991. Exploitation, Utilization and protection of wild plant resources under forest in Northeast China. Resources Science, (2):41-45. (in Chinese)
[21] Elith J, 2000. Quantitative methods for modeling species habitat:comparative performance and an application to Australian plants. In:Ferson S, Burgman M (eds). Quantitative Methods for Conservation Biology. New York:Springer, 39-58.
[22] Elith J, Graham C H, Anderson R P et al., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29(2):129-151. doi: 10.1111/j.2006.0906-7590.04596.x
[23] Elith J, Phillips S J, Hastie T et al., 2011. A statistical explanation of MaxEnt for ecologists. Biodiversity Research, 17(1):43-57. doi: 10.1111/j.1472-4642.2010.00725.x
[24] Estallo E L, Sangermano F, Grech M et al., 2018. Modelling the distribution of the vector Aedes aegypti in a central Argentine city. Medical and Veterinary Entomology, 32(4):451-461. doi: 10.1111/mve.12323
[25] Evangelista P H, Kumar S, Stohlgren T J et al., 2008. Modelling invasion for a habitat generalist and a specialist plant species. Diversity and Distributions, 14(5):808-817. doi: 10.1111/j.1472-4642.2008.00486.x
[26] Fick S E, Hijmans R J, 2017. WorldClim 2:new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12):4302-4315. doi: 10.1002/joc.5086
[27] French K J, Shackell N L, den Heyer C E, 2018. Strong relation-ship between commercial catch of adult Atlantic halibut (Hip-poglossus hippoglossus) and availability of suitable habitat for juveniles in the Northwest Atlantic Ocean. Fishery Bulletin, 116(2):107-121. doi: 10.7755/FB.116.2.1
[28] Fu Peiyun, 1995. Clavis Plantarum Chinae Boreali-Orientalis (Editio Secunda). Beijing:Science Press, 35. (in Chinese)
[29] Galparsoro I, Borja Á, Bald J et al., 2009. Predicting suitable habitat for the European lobster (Homarus gammarus), on the Basque continental shelf (Bay of Biscay), using Ecological-Niche Factor Analysis. Ecological Modelling, 220(4):556-567. doi: 10.1016/j.ecolmodel.2008.11.003
[30] Giordano P F, Navarro J L, Martella M B, 2010. Building large-scale spatially explicit models to predict the distribution of suitable habitat patches for the Greater rhea (Rhea americana), a near-threatened species. Biological Conservation, 143(2):357-365. doi: 10.1016/j.biocon.2009.10.022
[31] Greer G K, McCarthy B C, 2000. Patterns of growth and repro-duction in a natural population of the fern Polystichum acrostichoides. American Fern Journal, 90(2):60-76. doi: 10.2307/1547415
[32] Gu W D, Swihart R K, 2004. Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation, 116(2):195-203. doi: 10.1016/S0006-3207(03)00190-3
[33] Han X Z, Ma R, Chen Q et al., 2018. Anti-inflammatory action of Athyrium multidentatum extract suppresses the LPS-induced TLR4 signaling pathway. Journal of Ethnopharmacology, 217:220-227. doi: 10.1016/j.jep.2018.02.031
[34] He Xingyuan, Yu Jinghua, 2016. Technology and demonstration of ecological protection and exploitation and utilization of bi-ological resources in northeast forest region. Acta Ecologica Sinica, 36(22):7028-7033. (in Chinese)
[35] Jia Xiang, Ma Fangfang, Zhou Wangming et al., 2017. Impacts of climate change on the potential geographical distribution of broadleaved Korean pine (Pinus koraiensis) forests. Acta Ecologica Sinica, 37(2):464-473. (in Chinese)
[36] Khafaga O, Hatab E E, Omar K, 2011. Predicting the potential geographical distribution of Nepeta septemcrenata in Saint Katherine Protectorate, South Sinai, Egypt using Maxent. Ac-ademia Arena, 3(7):45-50.
[37] Kumar S, Stohlgren T J, 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomy-rica monticola in New Caledonia. Journal of Ecology and Natural Environment, 1(4):94-98.
[38] Lathrop R G, Niles L, Smith P et al., 2018. Mapping and modeling the breeding habitat of the Western Atlantic Red Knot (Calidris canutus rufa) at local and regional scales. The Condor, 120(3):650-665. doi: 10.1650/CONDOR-17-247.1
[39] Li G Q, Du S, Guo K, 2015. Evaluation of limiting climatic factors and simulation of a climatically suitable habitat for Chinese sea buckthorn. PLoS One, 10(7):e0131659. doi: 10.1371/journal.pone.0131659
[40] Li G Q, Du S, Wen Z M, 2016. Mapping the climatic suitable habitat of oriental arborvitae (Platycladus orientalis) for in-troduction and cultivation at a global scale. Scientific Reports, 6:30009. doi: 10.1038/srep30009
[41] Li N, Wang Z, Xia L et al., 2019. Effects of long-term coastal rec-lamation on suitable habitat and wintering population size of the endangered Red-crowned Crane, Grus japonensis. Hydrobiolo-gia, 827(1):21-29. doi: 10.1007/s10750-017-3341-x
[42] Liu Baodong, Li Xinhong, 1995. Resources of economic plant pteridophyte in Northeast China. Chinese Wild Plant Resources, (4):36-38. (in Chinese)
[43] Liu Dongmei, Sheng Jiwen, Wang Sihong et al., 2016. Chemical constituents from Athyrium multidentatum rhizome and their reducing capacity. Chinese Journal of Experimental Traditional Medical Formulae, 22(21):59-62. (in Chinese)
[44] Lu C Y, Gu W, Dai A H et al., 2012. Assessing habitat suitability based on geographic information system (GIS) and fuzzy:a case study of Schisandra sphenanthera Rehd. et Wils. In Qin-ling Mountains, China. Ecological Modelling, 242:105-115. doi: 10.1016/j.ecolmodel.2012.06.002
[45] Lu Shugang, Chen Feng, 2013. On the pteridophyte ecological types. Journal of Yunnan University (Natural Sciences Edition), 35(3):407-415. (in Chinese)
[46] MacKenzie D I, Nichols J D, Lachman G B et al., 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83(8):2248-2255. doi:10.1890/0012-9658 (2002)083[2248:ESORWD]2.0.CO;2
[47] Manel S, Williams H C, Ormerod S J, 2001. Evaluating presence-absence models in ecology:the need to account for prevalence. Journal of Applied Ecology, 38(5):921-931. doi: 10.1046/j.1365-2664.2001.00647.x
[48] Merow C, Smith M J, Silander J A Jr, 2013. A practical guide to MaxEnt for modeling species' distributions:what it does, and why inputs and settings matter. Ecography, 36(10):1058-1069. doi: 10.1111/j.1600-0587.2013.07872.x
[49] Nettesheim F C, Damasceno E R, Sylvestre L S, 2014. Different slopes of a mountain can determine the structure of ferns and lycophytes communities in a tropical forest of Brazil. Anais da Academia Brasileira de Ciências, 86(1):199-210. doi: 10.1590/0001-3765201495912
[50] Nieto-Lugilde D, Lenoir J, Abdulhak S et al., 2015. Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography, 38(6):578-589. doi: 10.1111/ecog.00954
[51] Olsson O, Rogers D J, 2009. Predicting the distribution of a suit-able habitat for the white stork in Southern Sweden:identifying priority areas for reintroduction and habitat restoration. Animal Conservation, 12(1):62-70. doi: 10.1111/j.1469-1795.2008.00225.x
[52] Pearce J L, Boyce M S, 2006. Modelling distribution and abun-dance with presence-only data. Journal of Applied Ecology, 43(3):405-412. doi: 10.1111/j.1365-2664.2005.01112.x
[53] Pearson R G, Raxworthy C J, Nakamura M et al., 2007. ORIGINAL ARTICLE:Predicting species distributions from small numbers of occurrence records:a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1):102-117. doi: 10.1111/j.1365-2699.2006.01594.x
[54] Peck J H, Peck C J, Farrar D R, 1990. Influences of life history attributes on formation of local and distant fern populations. American Fern Journal, 80(4):126-142. doi: 10.2307/1547200
[55] Peterson A T, Soberón J, Pearson R G et al., 2011. Ecological Niches and Geographic Distributions. Princeton:Princeton University Press, 172.
[56] Phillips S J, Anderson R P, Schapire R E, 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4):231-259. doi:10.1016/j.ecolmodel. 2005.03.026
[57] Phillips S J, Dudik M, 2008. Modeling of species distributions with Maxent:new extensions and a comprehensive evaluation. Ecography, 31(2):161-175. doi: 10.1111/j.0906-7590.2008.5203.x
[58] Phillips S J, Anderson R P, Dudik M et al., 2017. Opening the black box:an open-source release of Maxent. Ecography, 40(7):887-893. doi: 10.1111/ecog.03049
[59] Phillips S J, Dudík M, Robert E S, 2018. Maxent software for modeling species niches and distributions (Version 3.4.1). Available at:http://biodiversityinformatics.amnh.org/open_source/maxent/.
[60] Phipps W L, Diekmann M, MacTavish L M et al., 2017. Due South:a first assessment of the potential impacts of climate change on Cape vulture occurrence. Biological Conservation, 210:16-25. doi: 10.1016/j.biocon.2017.03.028
[61] Qi G Y, Yang L Q, Xiao C X et al., 2015. Nutrient values and bioactivities of the extracts from three fern species in China:a comparative assessment. Food & Function, 6(9):2918-2929. doi: 10.1039/C5FO00510H
[62] Qi G Y, Liu Z G, Fan R et al., 2017. Athyrium multidentatum (Doll.) Ching extract induce apoptosis via mitochondrial dys-function and oxidative stress in HepG2 cells. Scientific Reports, 7(1):2275. doi: 10.1038/s41598-017-02573-8
[63] Radosavljevic A, Anderson R P, 2014. Making better MAXENT models of species distributions:complexity, overfitting and evaluation. Journal of Biogeography, 41(4):629-643. doi: 10.1111/jbi.12227
[64] Remya K, Ramachandran A, Jayakumar S, 2015. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecological Engineering, 82:184-188. doi: 10.1016/j.ecoleng.2015.04.053
[65] Richard K, Abdel-Rahman E M, Mohamed S A et al., 2018. Im-portance of remotely-sensed vegetation variables for predicting the spatial distribution of African citrus Triozid (Trioza erytreae) in Kenya. International Journal of Geo-Information, 7(11):429. doi: 10.3390/ijgi7110429
[66] Sato T, 1992. Size dependency of gametophytes decay in Athyrium brevifrons Nakai during spring desiccation. Ecological Research, 7(1):1-7. doi: 10.1007/BF02348591
[67] Sheffield E, 1994. Alternation of generations in ferns:mechanisms and significance. Biological Review, 69(3):331-343. doi: 10.1111/j.1469-185X.1994.tb01275.x
[68] Shen Tao, Zhang Ji, Yang Qing et al., 2017. Ecology suitability study of Gentiana rhodantha in Yunnan-Guizhou Plateau. Chinese Pharmaceutical Journal, 52(20):1816-1823. (in Chinese)
[69] Testo W L, Watkins J E Jr, 2013. Understanding mechanisms of rarity in Pteridophytes:competition and climate change threaten the rare fern Asplenium scolopendrium var. americanum (As-pleniaceae). American Journal of Botany, 100(11):2261-2270. doi: 10.3732/ajb.1300150
[70] Vilar L, Gómez I, Martínez-Vega J et al., 2016. Multitemporal modelling of socio-economic wildfire drivers in central Spain between the 1980s and the 2000s:comparing generalized linear models to machine learning algorithms. PLoS One, 11(8):e0161344. doi: 10.1371/journal.pone.0161344
[71] Vormisto J, Tuomisto H, Oksanen J, 2004. Palm distribution pat-terns in Amazonian rainforests:what is the role of topographic variation? Journal of Vegetation Science, 15(4):485-494. doi: 10.1111/j.1654-1103.2004.tb02287.x
[72] Wang Yunsheng, Xie Bingyan, Wan Fanghao et al., 2007. Appli-cation of ROC curve analysis in evaluating the performance of alien species' potential distribution models. Biodiversity Science, 15(4):365-372. (in Chinese)
[73] Wang Zhongren, Zhang Xianchun, Zhu Weiming et al., 1999. Flora Reipublicae Popularis Sinicae, vol. 3(2). Beijing:Science Press, 162-165. (in Chinese)
[74] Watkins J E Jr, Mack M K, Mulkey S S, 2007. Gametophyte ecology and demography of epiphytic and terrestrial tropical ferns. American Journal of Botany, 94(4):701-708. doi: 10.3732/ajb.94.4.701
[75] West A M, Kumar S, Brown C S et al., 2016. Field validation of an invasive species Maxent model. Ecological Informatics, 36:126-134. doi: 10.1016/j.ecoinf.2016.11.001
[76] Wu F, Wang M M, Xi Z et al., 2014. Study on drought stress of six common ferns in North China. Acta Horticulturae, 1035:113-124. doi: 10.17660/ActaHortic.2014.1035.13
[77] Wu Z Y, Raven P H, Hong D Y, 2013. Flora of China, Vol. 2-3. Beijing:Science Press; St. Louis:Missouri Botanical Garden Press, 452, 466-467.
[78] Xu Wenduo, 1986. The relation between the zonal distribution of types of vegetation and the climate in Northeast China. Acta Phytoecologica et Geobotanica Sinica, 10(4):254-263. (in Chinese)
[79] Yang X Q, Kushwaha S P S, Saran S et al., 2013. Maxent model-ing for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51:83-87. doi: 10.1016/j.ecoleng.2012.12.004
[80] Yi Y J, Cheng X, Yang Z F et al., 2016. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecological Engi-neering, 92:260-269. doi: 10.1016/j.ecoleng.2016.04.010
[81] Zaniewski A E, Lehmann A, Overton J M, 2002. Predicting species spatial distributions using presence-only data:a case study of native New Zealand ferns. Ecological Modelling, 157(2-3):261-280. doi: 10.1016/s0304-3800(02)00199-0
[82] Zhang Jiping, Zhang Yili, Liu Linshan et al., 2011. Predicting potential distribution of Tibetan Spruce (Picea smithiana) in Qomolangma (Mount Everest) national nature preserve using maximum entropy niche-based model. Chinese Geographical Science, 21(4):417-426. doi: 10.1007/s11769-011-0483-z
[83] Zhang M G, Zhou Z K, Chen W Y et al., 2014. Major declines of woody plant species ranges under climate change in Yunnan, China. Diversity and Distributions, 20(4):405-415. doi: 10.1111/ddi.12165
[84] Zhang Xianchun, Wei Ran, Liu Hongmei et al., 2013. Phylogeny and classification of the extant lycophytes and ferns from China. Chinese Bulletin of Botany, 48(2):119-137. (in Chinese)