[1] Aldezabal A, Moragues L, Odriozola I et al., 2015. Impact of grazing abandonment on plant and soil microbial communities in an Atlantic mountain grassland. Applied Soil Ecology, 96:251-260. doi: 10.1016/j.apsoil.2015.08.013
[2] Anderson J M, 1992. Responses of soils to climate change. Ad-vances in Ecological Research, 22:163-210. doi: 10.1016/S0065-2504(08)60136-1
[3] Blagodatskaya E, Yuyukina T, Blagodatsky S et al., 2011. Turno-ver of soil organic matter and of microbial biomass under C3-C4 vegetation change:consideration of 13C fractionation and preferential substrate utilization. Soil Biology and Biochemistry, 43(1):159-166. doi: 10.1016/j.soilbio.2010.09.028
[4] Bogorodskaya A V, Baranchikov Y N, Ivanova G A, 2009. The state of microbial complexes in soils of forest ecosystems after fires and defoliation of stands by gypsy moths. Eurasian Soil Science, 42(3):310-317. doi: 1134/S1064229309030089
[5] Canarini A, Kiær L P, Dijkstra F A, 2017. Soil carbon loss regu-lated by drought intensity and available substrate:a me-ta-analysis. Soil Biology and Biochemistry, 112(1):90-99. doi: 10.1016/j.soilbio.2017.04.020
[6] Chen C.R, Condron L M, Davis M R et al., 2004. Effects of plant species on microbial biomass phosphorus and phosphatase ac-tivity in a range of grassland soils. Biology and Fertility of Soils, 40(5):313-322. doi: 10.1007/s00374-004-0781-z
[7] Chen D M, Mi J, Chu P F et al., 2015. Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau. Landscape Ecology, 30(9):1669-1682. doi: 10.1007/s10980-014-9996-z
[8] Chen G C, Gan L, Wang S L et al., 2001. A comparative study on the microbiological, characteristics of soils under different, land-use conditions from Karst Areas of Southwest China. Chinese Journal of Geochemistry, 20(1):52-58. doi: 10.1007/BF03166849
[9] Donat M G, Alexander L V, Herold N et al., 2016. Temperature and precipitation extremes in century-long gridded observations, reanalyses, and atmospheric model simulations. Journal of Geophysical Research Atmospheres, 121 (19):11174-11189. doi: 10.1002/2016JD025480
[10] Dijkstra P, Thomas S C, Heinrich P L et al., 2011. Effect of tem-perature on metabolic activity of intact microbial communities:evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use effi-ciency. Soil Biology and Biochemistry, 43(10):2023-2031. doi: 10.1016/j.soilbio.2011.05.018
[11] Fierer N, Schimel J P, 2002. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry, 34(6):777-787. doi: 10.1016/S0038-0717(02)00007-X
[12] Francaviglia R, Renzi G, Ledda L et al., 2017. Organic carbon pools and soil biological fertility are affected by land use in-tensity in Mediterranean ecosystems of Sardinia, Italy. Science of the Total Environment, 599-600:789-796. doi: 10.1016/j.scitotenv.2017.05.021
[13] Frostegård Å, Bååth E, Tunlio A, 1993. Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis. Soil Biology & Biochemistry, 25(6):723-730. doi: 10.1016/0038-0717(93)90113-P
[14] He N P, Wang R M, Gao Y et al., 2013. Changes in the tempera-ture sensitivity of SOM decomposition with grassland succes-sion:implications for soil C sequestration. Ecology and Evolution, 3(15):5045-5054. doi: 10.1002/ece3.881
[15] He Wenbin, 2012. The Impacts of Moving on Compensatoty Growth for Ceratoides Arborescens. Huhhot:Inner Mongolia University. (in Chinese)
[16] Hu Q, Pan F F, Pan X B et al., 2015. Spatial analysis of climate change in Inner Mongolia during 1961-2012, China. Applied Geography, 60:254-260. doi: 10.1016/j.apgeog.2014.10.009
[17] Insam H, 1990. Are the soil microbial biomass and basal respira-tion governed by the climatic regime? Soil Biology and Bio-chemistry, 22(4):525-532. doi:10.1016/0038-0717(90) 90189-7
[18] Jiang Y J, Sun B, Jin C et al., 2013. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biology and Biochemistry, 60 (60):1-9. doi: 10.1016/j.soilbio.2013.01.006
[19] Li Y, Liu Y H, Wang Y L et al., 2014. Interactive effects of soil temperature and moisture on soil N mineralization in a Stipa krylovii grassland in Inner Mongolia, China. Journal of Arid Land, 6(5):571-580. doi: 10.1007/s40333-014-0025-5
[20] Liu Tao, Zhang Yongxian, Xu Zhenzhu et al., 2012. Effects of short-term warming and increasing precipitation on soil respi-ration of desert steppe of Inner Mongolia. Chinese Journal of Plant Ecology, 36(10):1043-1053. (in Chinese)
[21] Liu X R, Ren J Q, Li S G et al., 2015. Effects of simulated nitro-gen deposition on soil net nitrogen mineralization in the meadow steppe of Inner Mongolia, China. Plos One, 10 (7):e0134039. doi: 10.10.1371/journal.pone.0134039
[22] Liu Y, He N P, Zhu J X et al., 2017. Regional variation in the temperature sensitivity of soil organic matter decomposition in China's forests and grasslands. Global Change Biology, 23(8):3393-3402. doi: 10.1111/gcb.13613
[23] Liu Y, He N P, Wen X F et al., 2018. The optimum temperature of soil microbial respiration:Patterns and controls. Soil Biology and Biochemistry, 121(1):35-42. doi.org/10.1016/j.soilbio. 2018.02.019Get rights and content
[24] Li X Z, Chen Z Z, 2004. Soil microbial biomass C and N along a climatic transect in the Mongolian steppe. Biology and Fertility of Soils, 39(5):344-351. doi: 10.1007/s00374-004-0720-z
[25] Nelson D W, Sommers L E, Sparks D L et al., 1996. Total carbon, organic carbon, and organic matter. In:Sparks D L (ed). Methods of Soil Analysis. Madison:Soil Science Society of America, 9:961-1010.
[26] Powlson D S, Jenkinson D S, 1976. The effects of biocidal treat-ments on metabolism in soil-II. Gamma irradiation, auto-claving, air-drying and fumigation. Soil Biology and Biochem-istry, 8(3):179-188. doi: 10.1016/0038-0717(76)90002-X
[27] Raiesi F, Beheshti A, 2014. Soil C turnover, microbial biomass and respiration, and enzymatic activities following rangeland conversion to wheat-alfalfa cropping in a semi-arid climate. Environmental Earth Sciences, 72(12):5073-5088. doi: 10.1007/s12665-014-3376-5
[28] Saggar S, Mcintosh P D, Hedley C B et al., 1999. Changes in soil microbial biomass, metabolic quotient, and organic matter turnover under Hieracium (H. pilosella L.). Biology and Fer-tility of Soils, 30(3):232-238. doi: 10.1007/s003740050613
[29] Schimel J P, Bennett J, 2004. Nitrogen mineralization:challenges of a changing paradigm. Ecology, 85(3):591-602. doi: 10.1890/03-8002
[30] Steinweg J M, Dukes J S, Paul E A et al., 2013. Microbial re-sponses to multi-factor climate change:effects on soil enzymes. Frontiers in Microbiology, 4:146. doi: 10.3389/fmicb.2013.00146
[31] Suseela V, Tharayil N, Xing B S et al., 2014. Warming alters po-tential enzyme activity but precipitation regulates chemical transformations in grass litter exposed to simulated climatic changes. Soil Biology and Biochemistry, 75(1):102-112. doi: 10.1016/j.soilbio.2014.03.022
[32] Wang G C, Du R, Kong Q X et al., 2004. Experimental study on soil respiration of temperate grassland in China. Chinese Sci-ence Bulletin, 49(6):642-646. doi: 10.1360/03wd0241
[33] Wang Q, Wang D, Wen X F et al., 2015. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands. Plos One, 10(2):e0117033. doi: 10.1371/journal.pone.0117033.
[34] Wang Z L, Li J, Lai C G et al., 2017. Does drought in China show a significant decreasing trend from 1961 to 2009. Science of the Total Environment, 579:314-324. doi:10.1016/j.scitotenv. 2016.11.098
[35] Wu H, Dannenmann M, Wolf B et al., 2012. Seasonality of soil microbial nitrogen turnover in continental steppe soils of Inner Mongolia. Ecosphere, 3(4):1-18. doi: 0.1890/ES11-00188.1
[36] Xu X F, Schimel J P, Janssens I A et al., 2017. Global pattern and controls of soil microbial metabolic quotient. Ecological Monographs, 87(3):429-441. doi: 10.1002/ecm.1258
[37] Xu Z W, Yu G R, Zhang X Y et al., 2015. The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Applied Soil Ecology, 86:19-29. doi: 10.1016/j.apsoil.2014.09.015
[38] Yan Hui, Cai Zucong, Zhong Wenhui, 2006. PLFA analysis and its applications in the study of soil microbial diversity. Acta Pedologica Sinica, 43(5):851-859. (in Chinese)
[39] Zhao C C, Miao Y, Yu C D et al., 2016. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe. Scientific Reports, 6:24317. doi: 10.1038/srep24317
[40] Zhao J, Yang J, Shao Y Q, 2007. Microbiological quantitive as-sessment on soil health in a degraded grassland. Journal of Agro-Environment Science, 26(6):2090-2094.
[41] Zhao L L, Xu J J, Powell Jr A M et al., 2015. Uncertainties of the global-to-regional temperature and precipitation simulations in CMIP5 models for past and future 100 years. Theoretical & Applied Climatology, 122(1):259-270. doi: 10.1007/s00704-014-1293-x
[42] Zheng J F, Chen J H, Pan G X et al., 2016. Biochar decreased microbial metabolic quotient and shifted community composi-tion four years after a single incorporation in a slightly acid rice paddy from southwest China. Science of the Total Environment, 571:206-217. doi: 10.1016/j.scitotenv.2016.07.135
[43] Zhou D N, Zhang F P, Duan Z Y et al., 2013. Effects of heavy metal pollution on microbial communities and activities of mining soils in Central Tibet, China. Journal of Food Agricul-ture & Environment, 11(1):676-681.
[44] Zhou X Q, Chen C R, Wang Y F et al., 2013. Warming and in-creased precipitation have differential effects on soil extracel-lular enzyme activities in a temperate grassland. Science of the Total Environment, 444:552-558. doi:10.1016/j.scitotenv. 2012.12.023