[1] Bin G S, Parker P, 2012. Measuring buildings for sustainability:comparing the initial and retrofit ecological footprint of a cen-tury home-The REEP House. Applied Energy, 93:24-32. doi: 10.1016/j.apenergy.2011.05.055
[2] Castelo Branco D A, Moura M C P, Szklo A et al., 2013. Emis-sions reduction potential from CO2 capture:a life-cycle as-sessment of a Brazilian coal-fired power plant. Energy Policy, 61:1221-1235. doi: 10.1016/j.enpol.2013.06.043
[3] Chen J D, Shen L Y, Song X N et al., 2017. An empirical study on the CO2 emissions in the Chinese construction industry. Journal of Cleaner Production, 168:645-654. doi:10.1016/j. jcle-pro.2017.09.072
[4] Cheng Y H, Chang Y H, Lu I J, 2015. Urban transportation ener-gy and carbon dioxide emission reduction strategies. Applied Energy, 157:953-973. doi: 10.1016/j.apenergy.2015.01.126
[5] Cuéllar-Franca R M, Azapagic A, 2012. Environmental impacts of the UK residential sector:life cycle assessment of houses. Building and Environment, 54:86-99. doi:10.1016/j. build-env.2012.02.005
[6] Dinda S, 2004. Environmental kuznets curve hypothesis:a survey. Ecological Economics, 49(4):431-455. doi:10.1016/j. ecolecon.2004.02.011
[7] Du Q, Wu M, Wang N et al., 2017. Spatiotemporal characteristics and influencing factors of China's construction industry carbon intensity. Polish Journal of Environmental Studies, 26(6):2507-2521. doi: 10.15244/pjoes/70894
[8] Feiz R, Ammenberg J, Eklund M et al., 2015. Improving the CO2 performance of cement, part I:utilizing life-cycle assessment and key performance indicators to assess development within the cement industry. Journal of Cleaner Production, 98:272-281. doi: 10.1016/j.jclepro.2014.01.083
[9] Gao Yuanxue, 2012. Assessment Methodology and Empirical Analysis of Embodied Carbon Footprint of Building Construc-tion. Beijing:Tsinghua University. (in Chinese)
[10] Greer I, Doellgast V, 2017. Marketization, inequality, and institu-tional change:toward a new framework for comparative em-ployment relations. Journal of Industrial Relations, 59(2):192-208. doi: 10.1177/0022185616673685
[11] Gong Zhiqi, 2004. A Quantitative Method to the Assessment of the Life Cycle Embodied Environmental Profile of Building Materials. Beijing:Tsinghua University. (in Chinese)
[12] Holtz-Eakin D, Selden T M, 1995. Stoking the fires? CO2 emis-sions and economic growth. Journal of Public Economics, 57(1):85-101. doi: 10.1016/0047-2727(94)01449-X
[13] IPCC (Intergovernmental Panel on Climate Change), 2014. Key economic sectors and services. In:Field C B (eds). Climate Change 2014:Impacts, Adaptation, and VuLogerability. Part A:Global and Sectoral Aspects. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press, 659-708. doi:10.1017/CBO9781107415379. 015
[14] Li Gang, 2009. Study on the City Builds Wastes Reclamation. Xi'an:Chang'an University. (in Chinese)
[15] Lin B Q, Liu H X, 2015. CO2 mitigation potential in China's building construction industry:a comparison of energy per-formance. Building and Environment, 94:239-251. doi: 10.1016/j.buildenv.2015.08.013
[16] Liu H X, Lin B Q, 2017. Energy substitution, efficiency, and the effects of carbon taxation:evidence from China's building construction industry. Journal of Cleaner Production, 141:1134-1144. doi: 10.1016/j.jclepro.2016.09.119
[17] Lu Y J, Cui P, Li D Z, 2016. Carbon emissions and policies in China's building and construction industry:evidence from 1994 to 2012. Building and Environment, 95:94-103. doi: 10.1016/j.buildenv.2015.09.011
[18] Luo Z W, Song Y H, Hu Z C et al., 2011. Forecasting charging load of plug-in electric vehicles in China. Proceedings of 2011 IEEE Power and Energy Society General Meeting. Detroit, MI, USA:IEEE, 1-8. doi: 10.1109/PES.2011.6039317
[19] Monahan J, Powell J C, 2011. An embodied carbon and energy analysis of modern methods of construction in housing:A case study using a lifecycle assessment framework. Energy and Buildings, 43(1):179-188. doi: 10.1016/j.enbuild.2010.09.005
[20] National Bureau of Statistics of China, 2006-2015. China Energy Statistical Yearbook (2006-2015). Beijing:China Statistics Press. (in Chinese)
[21] National Bureau of Statistics of China, 2006-2015. China Statis-tical Yearbook (2006-2015). Beijing:China Statistics Press. (in Chinese)
[22] National Development and Reform Commission, 2015. China's Intended Nationally Determined Contribution:Enhanced Ac-tions on Climate Change. Beijing. Available at:http://www.ccchi-na.org.cn/archiver/ccchinaen/UpFile/Files/Default/20150701085931838916.pdf
[23] Pazienza P, 2015. The environmental impact of the FDI inflow in the transport sector of OECD countries and policy implications. International Advances in Economic Research, 21(1):105-116. doi: 10.1007/s11294-014-9511-y
[24] Qi Shenjun, Tian Sinv, Zhang Yunbo et al., 2014. Study on struc-tural characteristics of carbon emissions and emission reduction strategies of existing buildings based on RPM. Building Science, 30 (2):1-7. (in Chinese)
[25] Ren J Z, An D, Liang H W et al., 2016. Life cycle energy and CO2 emission optimization for biofuel supply chain planning under uncertainties. Energy, 103:151-166. doi:10.1016/j. en-ergy.2016.02.151
[26] Robertson S, 2016. The potential mitigation of CO2 emissions via modal substitution of high-speed rail for short-haul air travel from a life cycle perspective:an Australian case study. Trans-portation Research Part D:Transport and Environment, 46:365-380. doi: 10.1016/j.trd.2016.04.015
[27] Shan Y L, Guan D B, Liu J H et al., 2017. Methodology and ap-plications of city level CO2 emission accounts in China. Journal of Cleaner Production, 161:1215-1225. doi:10.1016/j. jclepro.2017.06.075
[28] Tang J R, Zhang B Y, Wu L J, 2012. Path analysis on the influence factors of construction carbon emissions and policy implications for Jiangsu in China. Advanced Materials Research, 524-527:2595-2601. doi:10.4028/www.scientific.net/AMR. 524-527.2595
[29] Voigt S, De Cian E, Schymura M et al., 2014. Energy intensity developments in 40 major economies:structural change or technology improvement? Energy Economics, 41:47-62. doi: 10.1016/j.eneco.2013.10.015
[30] Wang Jing, 2009. Calculation and Analysis of Life Cycle CO2 Emission of Chinese Urban Residential Communities. Beijing:Tsinghua University. (in Chinese)
[31] Wang N N, 2014. The role of the construction industry in China's sustainable urban development. Habitat International, 44:442-450. doi: 10.1016/j.habitatint.2014.09.008
[32] Wang Z, Xiao C M, Niu B B et al., 2017. Identify sectors' role on the embedded CO2 transfer networks through China's regional trade. Ecological Indicators, 80:114-123. doi:10.1016/j. ecolind.2017.05.013
[33] Yan H, Shen Q P, Fan L C H et al., 2010. Greenhouse gas emis-sions in building construction:a case study of One Peking in Hong Kong. Building and Environment, 45(4):949-955. doi: 10.1016/j.buildenv.2009.09.014
[34] Yan M, An Z, 2017. Foreign direct investment and environmental pollution:new evidence from China. Econometrics Letters, 4(1):1-17.
[35] Yan Pengfei, Yang Jun, 2007. An improved method and applica-tion of environmental impact assessment. Environment and Sustainable Development, 5:10-12. (in Chinese)
[36] Zhang S H, Worrell E, Crijns-Graus W, 2015. Mapping and modeling multiple benefits of energy efficiency and emission mitigation in China's cement industry at the provincial level. Applied Energy, 155:35-58. doi:10.1016/j.apenergy.2015. 05.104
[37] Zhang X C, Wang F L, 2016a. Hybrid input-output analysis for life-cycle energy consumption and carbon emissions of China's building sector. Building and Environment, 104:188-197. doi: 10.1016/j.buildenv.2016.05.018
[38] Zhang Z Y, Wang B, 2016b. Research on the life-cycle CO2 emis-sion of China's construction sector. Energy and Buildings, 112:244-255. doi: 10.1016/j.enbuild.2015.12.026
[39] Zhao Ping, Tong Ji Feng, Ma Juanrong, 2004. The research on the system of building material environment load index and eval-uate. China Building Materials Science and Technology, 6:1-7. (in Chinese)
[40] Zhou B Y, Wu Y, Zhou B et al., 2016. Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions. Energy, 96:603-613. doi: 10.1016/j.energy.2015.12.041