[1] Al-Asadi R A, Mouazen A M, 2014. Combining frequency domain reflectometry and visible and near infrared spectroscopy for assessment of soil bulk density. Soil & Tillage Research, 135:60-70. doi: 10.1016/j.still.2013.09.002
[2] Bendini A, Cerretani L, Di Virgilio F et al., 2007. In process mon-itoring in industrial olive mill by means of FT-NIR. European Journal of Lipid Science and Technology, 109(5):498-504. doi: 10.1002/ejlt.200700001
[3] Brown D J, Shepherd K D, Walsh M G et al., 2006. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma, 132(3):273-290. doi:10.1016/j.geoderma.2005. 04.025
[4] Cambou A, Cardinael R, Kouakoua E et al., 2016. Prediction of soil organic carbon stock using visible and near infrared re-flectance spectroscopy (VNIRS) in the field. Geoderma, 261:151-159. doi: 10.1016/j.geoderma.2015.07.007
[5] Conforti M, Castrignano A, Robustelli G et al., 2015. Laborato-ry-based Vis-NIR spectroscopy and partial least square regres-sion with spatially correlated errors for predicting spatial vari-ation of soil organic matter content. Catena, 124:60-67. doi: 10.1016/j.catena.2014.09.004
[6] Evrendilek F, Celik I, Kilic S, 2004. Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey. Journal of Arid Environments, 59(4):743-752. doi: 10.1016/j.jaridenv.2004.03.002
[7] FAO, 1998. World Reference Base for Soil Resources. Rome:Food and Agriculture Organization of the United Nations.
[8] Gaetan C, Guyon X, Bleakley K, 2010. Spatial Statistics and Modeling. Springer, 90.
[9] Ge Y, Thomasson J A, Morgan C L et al., 2007. VNIR diffuse reflectance spectroscopy for agricultural soil property deter-mination based on regression-kriging. Transactions of the Asabe, 50(3):1081-1092. doi: 10.13031/2013.23122
[10] Guo L, Chen Y, Shi T et al., 2017a. Exploring the role of the spatial characteristics of visible and near-infrared reflectance in pre-dicting soil organic carbon density. ISPRS International Journal of Geo-Information, 6(10):308. doi: 10.3390/ijgi6100308
[11] Guo L, Linderman M, Shi T et al., 2018. Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling. Remote Sensing, 10(6):888. doi: 10.3390/rs10060888
[12] Guo L, Zhao C, Zhang H et al., 2017b. Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology. Geoderma, 285:280-292. doi: 10.1016/j.geoderma.2016.10.010
[13] Gupta D D, 2015. Soils as launching pad for healthy society and humannity-reality and not myth. International Journal Envi-ronmental & Agricultural Science, 1(2):37-45.
[14] Hartemink A E, McBratney A, de Lourdes M M, 2008. Digital Soil Mapping with Limited Data. Springer Science & Business Media, 250-251.
[15] Hubert M, Rousseeuw P J, Vanden Branden K, 2005. ROBPCA:a new approach to robust principal component analysis. Tech-nometrics, 47(1):64-79. doi: 10.1198/004017004000000563
[16] Jaber S M, Al-Qinna M I, 2015. Global and local modeling of soil organic carbon using Thematic Mapper data in a semi-arid en-vironment. Arabian Journal of Geosciences, 8(5):3159-3169. doi: 10.1007/s12517-014-1370-6
[17] Kumar S, 2015. Estimating spatial distribution of soil organic carbon for the Midwestern United States using historical data-base. Chemosphere, 127:49-57. doi:10.1016/j.chemosphere. 2014.12.027
[18] Kumar S, Lal R, Liu D S et al., 2013. Estimating the spatial dis-tribution of organic carbon density for the soils of Ohio, USA. Journal of Geographical Sciences, 23(2):280-296. doi: 10.1007/s11442-013-1010-1
[19] Lagacherie P, 2008. Digital Soil Mapping:A State of the Art. Springer, 3-14.
[20] Liu Y, Guo L, Jiang Q et al., 2015. Comparing geospatial tech-niques to predict SOC stocks. Soil and Tillage Research, 148:46-58. doi: 10.1016/j.still.2014.12.002
[21] Mouazen A, Kuang B, De Baerdemaeker J et al., 2010. Compari-son among principal component, partial least squares and back propagation neural network analyses for accuracy of meas-urement of selected soil properties with visible and near infrared spectroscopy. Geoderma, 158(1):23-31.
[22] Peon J, Fernandez S, Recondo C et al., 2017. Evaluation of the spectral characteristics of five hyperspectral and multispectral sensors for soil organic carbon estimation in burned areas. In-ternational Journal of Wildland Fire, 26(3):230-239. doi: 10.1071/wf16122
[23] Rai P, Majumdar G, DasGupta S et al., 2005. Prediction of the viscosity of clarified fruit juice using artificial neural network:a combined effect of concentration and temperature. Journal of Food Engineering, 68(4):527-533. doi:10.1016/j.jfoodeng. 2004.07.003
[24] Rossel R A V, Webster R, 2012. Predicting soil properties from the Australian soil visible-near infrared spectroscopic database. European Journal of Soil Science, 63(6):848-860. doi: 10.1111/j.1365-2389.2012.01495.x
[25] Roudier P, Hedley C B, Lobsey C R et al., 2017. Evaluation of two methods to eliminate the effect of water from soil vis-NIR spectra for predictions of organic carbon. Geoderma, 296:98-107. doi: https://doi.org/10.1016/j.geoderma.2017.02.014
[26] Schmidt M W, Torn M S, Abiven S et al., 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478(7367):49-56. doi: 10.1038/nature10386
[27] Shekhar S, Xiong H, 2008. Encyclopedia of GIS. Springer Science & Business Media, 60-61.
[28] Shi Z, Wang Q, Peng J et al., 2014. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Science China Earth Sciences, 57(7):1671-1680. doi: 10.1007/s11430-013-4808-x
[29] Terra F S, Demattê J A M, Viscarra Rossel R A, 2015. Spectral libraries for quantitative analyses of tropical Brazilian soils:Comparing vis-NIR and mid-IR reflectance data. Geoderma, 255-256:81-93. doi: 10.1016/j.geoderma.2015.04.017
[30] Trangmar B B, Yost R S, Uehara G, 1985. Application of geosta-tistics to spatial studies of soil properties. Advances in agron-omy, 38(1):45-94. doi: 10.1016/S0065-2113(08)60673-2
[31] Viscarra Rossel R A, Hicks W S, 2015. Soil organic carbon and its fractions estimated by visible-near infrared transfer functions. European Journal of Soil Science, 66(3):438-450. doi: 10.1111/ejss.12237
[32] Wang K, Zhang C, Li W, 2013. Predictive mapping of soil total nitrogen at a regional scale:a comparison between geograph-ically weighted regression and cokriging. Applied Geography, 42:73-85. doi: 10.1016/j.apgeog.2013.04.002
[33] Wilding L, 1985. Spatial variability:its documentation, accom-modation and implication to soil surveys. Soil spatial variability. Workshop.
[34] Zhang C, Tang Y, Xu X et al., 2011. Towards spatial geochemical modelling:use of geographically weighted regression for mapping soil organic carbon contents in Ireland. Applied Ge-ochemistry, 26(7):1239-1248. doi:10.1016/j.apgeochem. 2011.04.014
[35] Zhang Haitao, Guo Long, Chen Jiaying et al., 2013. Modeling of spatial distributions of farmland density and its temporal change using geographically weighted regression model. Chinese Geographical Science, 24 (2):191-204. doi:10.1007/s 11769-013-0631-8
[36] Zornoza R, Mataix-Solera J, Guerrero C et al., 2007. Evaluation of soil quality using multiple lineal regression based on physical, chemical and biochemical properties. Science of the Total Envi-ronment, 378(1):233-237. doi: 10.1016/j.scitotenv.2007.01.052